The Implications of CIP Deviations for International Capital Flows

BY CHRISTIAN KUBITZA, JEAN-DAVID SIGAUX, AND QUENTIN VANDEWEYER

Discussion by Amy W. Huber

The Wharton School

ECB Money Market Conference 2024

OVERVIEW OF PAPER AND DISCUSSION

- The covered interest-rate parity (CIP) has not held since GFC.
 - Evidence of intermediary constraints \rightarrow implications for (unconditional) expected returns across various asset classes (Du, Hébert, and Huber, 2022).
- This paper:
 - TWO security-level confidential data sets.
 - CIP deviations (CCB) affect investors' (conditional) portfolio allocation.
- Key results:
 - Dataset 1 (EMIR FX derivatives trading): $|CCB| \uparrow \Rightarrow hedge cost \uparrow \Rightarrow investors choose less hedged USD exposure.$
 - Dataset 2 (SHS securities holdings): Some investors achieve the lower hedged USD exposure by reducing USD bonds ⇒ price impact on USD bonds.

OVERVIEW OF PAPER AND DISCUSSION

- The covered interest-rate parity (CIP) has not held since GFC.
 - Evidence of intermediary constraints \rightarrow implications for (unconditional) expected returns across various asset classes (Du, Hébert, and Huber, 2022).
- This paper:
 - TWO security-level confidential data sets.
 - CIP deviations (CCB) affect investors' (conditional) portfolio allocation.
- Key results:
 - Dataset 1 (EMIR FX derivatives trading): $|CCB| \uparrow \Rightarrow hedge cost \uparrow \Rightarrow investors choose less hedged USD exposure.$
 - Dataset 2 (SHS securities holdings): Some investors achieve the lower hedged USD exposure by reducing USD bonds ⇒ price impact on USD bonds.
- Foundational result: CCB's effect on hedged USD exposure.
- Discussion: focus on this result by considering an alternative model.
 - Underscore the importance of the finding.
 - Suggest possible directions for future research.

WHY ILLUSTRATE WITH A DIFFERENT MODEL

- Current model is dynamic and general-equilibrium.
- To make it tractable, a few assumptions:
 - Two risky assets are uncorrelated.
 - FX: $dx_t = \mu^x dt + \sigma^x dZ_t^x$.
 - Risky USD (foreign) asset: $da_t = \zeta_t dt + \sigma^a dZ_t^a$.
 - $\operatorname{cor}(da_t, dx_t) = 0$: (1) $\operatorname{cor}(dZ_t^a, dZ_t^x) = 0$, (2) time-invariant μ^x .
 - No EUR (domestic) risky asset.
 - UIP holds.

WHY ILLUSTRATE WITH A DIFFERENT MODEL

- Current model is dynamic and general-equilibrium.
- To make it tractable, a few assumptions:
 - Two risky assets are uncorrelated.
 - FX: $dx_t = \mu^x dt + \sigma^x dZ_t^x$.
 - Risky USD (foreign) asset: $da_t = \zeta_t dt + \sigma^a dZ_t^a$.
 - $\operatorname{cor}(da_t, dx_t) = 0$: (1) $\operatorname{cor}(dZ_t^a, dZ_t^x) = 0$, (2) time-invariant μ^x .
 - No EUR (domestic) risky asset.
 - UIP holds.
- In reality, FX hedging decision likely depends on:
 - Return correlation between FX and risky assets.
 - cor(FX, risky USD asset).
 - cor(FX, risky EUR asset).
 - Expected FX return from unhedged exposure.
 - Non-zero due to persistent violations of UIP.

MEAN-VARIANCE AND HEDGING (DU AND HUBER, 2024)

- n for eign countries each with own currency and risky asset.
- ω_t : portfolio weights in risky asset.
- ψ_t : portfolio weights of unhedged currency exposure.
 - $\theta_t = \omega_t \psi_t$: portfolio weights of FX hedges.
- Conditional on ω_t , mean-variance investor solves for optimal ψ_t :

$$\max_{\boldsymbol{\psi_t}} \mathbb{E}_t(r_{h,t+1} - i_t^1) - \frac{\gamma}{2} \mathbb{V}(r_{h,t+1} - i_t^1)$$

MEAN-VARIANCE AND HEDGING (DU AND HUBER, 2024)

- n for eign countries each with own currency and risky asset.
- ω_t : portfolio weights in risky asset.
- ψ_t : portfolio weights of unhedged currency exposure.
 - $\theta_t = \omega_t \psi_t$: portfolio weights of FX hedges.
- Conditional on ω_t , mean-variance investor solves for optimal ψ_t :

$$\max_{\boldsymbol{\psi}_t} \mathbb{E}_t(r_{h,t+1} - i_t^1) - \frac{\gamma}{2} \mathbb{V}(r_{h,t+1} - i_t^1)$$

$$\Rightarrow \psi_t^* = \underbrace{\frac{\xi_t - x_t}{\gamma \mathbb{V}(\Delta s_{t+1} - i_t^1 1 + i_t - x_t)}}_{\text{var-adjusted FX return}} - \underbrace{\beta}_{\text{cov(FX, portfolio assets)}}$$

- x_t : FX hedging cost from CIP deviations (this paper).
- ξ_t : expected FX return from UIP violations.

MEAN-VARIANCE AND HEDGING (DU AND HUBER, 2024)

- n foreign countries each with own currency and risky asset.
- ω_t : portfolio weights in risky asset.
- ψ_t : portfolio weights of unhedged currency exposure.
 - $\theta_t = \omega_t \psi_t$: portfolio weights of FX hedges.
- Conditional on ω_t , mean-variance investor solves for optimal ψ_t :

$$\max_{\boldsymbol{\psi_t}} \mathbb{E}_t(r_{h,t+1} - i_t^1) - \frac{\gamma}{2} \mathbb{V}(r_{h,t+1} - i_t^1)$$

$$\Rightarrow \psi_t^* = \underbrace{\frac{\xi_t - x_t}{\gamma \mathbb{V}(\Delta s_{t+1} - i_t^1 1 + i_t - x_t)}}_{\text{var-adjusted FX return}} - \underbrace{\beta}_{\text{cov(FX, portfolio assets)}}$$

- x_t : FX hedging cost from CIP deviations (this paper).
- ξ_t : expected FX return from UIP violations.
- Traditional focus of hedging: β (Campbell, de Medeiros, and Viceira, 2010).
- BUT FX returns also matter!

HEDGING DRIVERS IN THE DATA

FIGURE 1: FX exposure vs. return covariance

HEDGING DRIVERS IN THE DATA

TABLE 1: Post-GFC average of FX return components (% pt.)				
	CIP deviation	UIP violation	$\operatorname{var}(\mathrm{FX})$	
EUR/USD	(-)0.2	1.8	11.0	

TABLE 1: Post-GFC average of FX return components (% pt.)			
CIP	deviation	UIP violation	var(FX)

TABLE 1: Post-GFC average of FX return components (% pt.)			
	CIP deviation	UIP violation	$\operatorname{var}(\operatorname{FX})$
EUR/USD	(-)0.2	1.8	11.0

• UIP violation (interest-rate differential) quite sizeable.

• Q: What's the relative importance of UIP vs. CIP deviations?

TABLE 1: Post-GFC average of FX return components (% pt.)				
	CIP deviation	UIP violation	$\operatorname{var}(\mathrm{FX})$	
EUR/USD	(-)0.2	1.8	11.0	

CDV

÷

1 107

1

• UIP violation (interest-rate differential) quite sizeable.

• Q: What's the relative importance of UIP vs. CIP deviations?

• Large var(FX):
$$\frac{\partial \psi^*}{\partial x} = \frac{-1}{\gamma \text{var}(\text{FX})} \ll 1.$$

THEFT I D. LODO

TABLE 1: Fost-GFC average of FX return components (% pt.)				
	CIP deviation	UIP violation	$\operatorname{var}(\mathrm{FX})$	
EUR/USD	(-)0.2	1.8	11.0	

TABLE 1. Dest CEC success of EV noture second state (07 mt)

• UIP violation (interest-rate differential) quite sizeable.

• Q: What's the relative importance of UIP vs. CIP deviations?

• Large var(FX):
$$\frac{\partial \psi^*}{\partial x} = \frac{-1}{\gamma \text{var}(\text{FX})} \ll 1.$$

- Is "optimal" elasticity w.r.t. CCB even smaller than authors' estimate?
- Not quite: ψ^* here is conditional on ω .

TABLE 1. 1 OST-GFC average of FX Teturn components (70 pt.)				
	CIP deviation	UIP violation	$\operatorname{var}(\operatorname{FX})$	
EUR/USD	(-)0.2	1.8	11.0	

TABLE 1, **D**oct CEC eveness of EV notions components (07 pt)

• UIP violation (interest-rate differential) quite sizeable.

• Q: What's the relative importance of UIP vs. CIP deviations?

• Large var(FX):
$$\frac{\partial \psi^*}{\partial x} = \frac{-1}{\gamma \text{var}(\text{FX})} \ll 1.$$

- Is "optimal" elasticity w.r.t. CCB even smaller than authors' estimate?
- Not quite: ψ^* here is conditional on ω .
- However: optimizing over both $\boldsymbol{\omega}$ and $\boldsymbol{\psi}$ still yields $\frac{\partial \psi^*}{\partial x} = f(\sigma_{FX,asset}, \sigma_{FX}^2) \neq 1$.
- Q: Should we benchmark estimated elasticity to 1?

RISK AND ELASTICITY

- By definition: elasticity $< 1 \Leftrightarrow$ "inelastic".
 - Meaningful in IO when price affects utility 1-for-1.
 - But asset pricing emphasizes "risk-return" trade-off.

RISK AND ELASTICITY

- By definition: elasticity $< 1 \Leftrightarrow$ "inelastic".
 - Meaningful in IO when price affects utility 1-for-1.
 - But asset pricing emphasizes "risk-return" trade-off.
- \Rightarrow If two securities differ in their riskiness, shouldn't the same \$1 increase in price result in different responses in quantity?

RISK AND ELASTICITY

- By definition: elasticity $< 1 \Leftrightarrow$ "inelastic".
 - Meaningful in IO when price affects utility 1-for-1.
 - But asset pricing emphasizes "risk-return" trade-off.
- \Rightarrow If two securities differ in their riskiness, shouldn't the same \$1 increase in price result in different responses in quantity?
- If yes, how to account for risks in elasticity estimation?
 - 1. Characterize risk directly at the security level.
 - Risk of a security = var(own return) + covariance with everything else.
 - Our model can help us focus on the covariance that matters.
 - 2. Characterize risk using (orthogonal) risk factors non-diversifiable risks.
 - Every observed security-level trading implies some factor-level trading.
 - Risk of factor captured by variance alone.
 - An and Huber (2024) follow this approach to derive cross-currency elasticity.

CONCLUSION

- This paper provides excellent micro-level evidence that FX returns matter for investors' portfolio allocation.
 - Important: FX returns matter over and above considerations of return covariance.
- Potential avenues for future research:
 - Relative to other determinants of FX returns, how important are CIP deviations?
 - Relative to the risk-adjusted optimal response to CIP deviations, how does the estimated elasticity compare?
- An exciting agenda!

- An, Y., and A. Huber. 2024. Intermediary elasticity and limited risk-bearing capacity. Working Paper.
- Campbell, J. Y., K. S. de Medeiros, and L. M. Viceira. 2010. Global currency hedging. Journal of Finance LXV:87–122.
- Du, W., B. Hébert, and A. W. Huber. 2022. Are intermediary constraints priced? Review of Financial Studies .
- Du, W., and A. Huber. 2024. Dollar asset holding and hedging around the globe. Working Paper.