THE OPTIMAL MONETARY POLICY RESPONSE TO TARIFFS

Javier Bianchi¹ Louphou Coulibaly²

¹Federal Reserve Bank of Minneapolis

²University of Wisconsin-Madison and NBER

10th Joint Bank of Canada-ECB Conference

Motivation

• How should a central bank respond to import tariffs?

Motivation

- How should a central bank respond to import tariffs?
 - ▶ Tighten monetary policy to contain inflationary pressures, or...
 - ▶ Maintain monetary stance ("look-through") and allow one-time jump in CPI?

Top Federal Reserve official calls for rate cuts as soon as July Governor Chris Waller says US has yet to see an inflation 'shock' from Donald Trump's tariffs

Motivation

- How should a central bank respond to import tariffs?
 - ▶ Tighten monetary policy to contain inflationary pressures, or...
 - ▶ Maintain monetary stance ("look-through") and allow one-time jump in CPI?

This paper:

Optimal monetary policy response to tariffs is expansionary

- Open-economy New Keynesian model with home and importable goods
 - ▶ Macroeconomic effects depend on monetary policy

flex-price allocation
• Look-through: output falls for small tariffs, but is generally ambiguous

- Look-through: output falls for *small* tariffs, but is generally ambiguous
- Optimal policy: **overheating** raising inflation beyond direct effects
 - Wedge between internal and international price
 - Fiscal externality ⇒ depress inefficiently imports

- Look-through: output falls for *small* tariffs, but is generally ambiguous
- Optimal policy: **overheating** raising inflation beyond direct effects
 - Wedge between internal and international price
 - Fiscal externality \Rightarrow depress inefficiently imports

terms-of-trade shock

→ flex-price allocation

- Look-through: output falls for *small* tariffs, but is generally ambiguous
- Optimal policy: overheating raising inflation beyond direct effects
 - ▶ Wedge between internal and international price
 - \triangleright Fiscal externality \Rightarrow depress inefficiently imports

Output gap can be positive in response to tariff

≠ textbook cost-push shock

flex-price allocation

- Look-through: output falls for *small* tariffs, but is generally ambiguous
- Optimal policy: **overheating** raising inflation beyond direct effects
 - Wedge between internal and international price
 - $\,\,{}^{}_{}$ Fiscal externality \Rightarrow depress in efficiently imports
 - Output gap can be positive in response to tariff

Trade surplus and exchange-rate depreciation

flex-price allocation

- Look-through: output falls for *small* tariffs, but is generally ambiguous
- Optimal policy: overheating raising inflation beyond direct effects
 - ▶ Wedge between internal and international price
 - $\,\,\check{}\,\,$ Fiscal externality \Rightarrow depress in efficiently imports

Output gap can be positive in response to tariff

Trade surplus and exchange-rate depreciation

Extensions: ex/endogenous TOT, intermediates, temporary/permanent

Environment

- Deterministic SOE, infinite horizon, representative household
- Two goods: home-produced goods (h) and foreign-produced goods (f)

Environment

- Deterministic SOE, infinite horizon, representative household
- Two goods: home-produced goods (h) and foreign-produced goods (f)
- The country is small ⇒ no market power in goods or capital markets
 - ▶ No role for terms-of-trade manipulation
 - Optimal tariff is zero
 - Monetary policy does not affect TOT
 - ▶ We will relax this assumption later

Environment

- Deterministic SOE, infinite horizon, representative household
- Two goods: home-produced goods (h) and foreign-produced goods (f)
- The country is small \Rightarrow no market power in goods or capital markets
 - ▶ No role for terms-of-trade manipulation
 - Optimal tariff is zero
 - Monetary policy does not affect TOT
 - ▶ We will relax this assumption later
- Monetary authority: sets monetary policy optimally, taking as given tariffs $\{\tau_t\}$

Households

Preferences

$$\sum_{t=0}^{\infty} \beta^{t} \left[U(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t}) \right]$$

$$U(c_t^h, c_t^f) = \frac{\sigma}{\sigma - 1} \left[\omega(c_t^h)^{1 - \frac{1}{\gamma}} + (1 - \omega)(c_t^f)^{1 - \frac{1}{\gamma}} \right]^{\frac{\gamma}{\gamma - 1} \frac{\sigma - 1}{\sigma}}, \quad v(\ell_t) = \omega \frac{\ell_t^{1 + \psi}}{1 + \psi}$$

Households

Preferences

$$\sum_{t=0}^{\infty} \beta^{t} \left[U(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t}) \right]$$

$$U(c_t^h, c_t^f) = \frac{\sigma}{\sigma - 1} \left[\omega(c_t^h)^{1 - \frac{1}{\gamma}} + (1 - \omega)(c_t^f)^{1 - \frac{1}{\gamma}} \right]^{\frac{\gamma}{\gamma - 1} \frac{\sigma - 1}{\sigma}}, \quad v(\ell_t) = \omega \frac{\ell_t^{1 + \psi}}{1 + \psi}$$

• Budget constraint:

$$P_t^h c_t^h + P_t^f (1 + \tau_t) c_t^f + \frac{e_t b_{t+1}}{R^*} + \frac{B_{t+1}}{R_t} = e_t b_t + B_t + W_t \ell_t + T_t + D_t$$

Households

Preferences

$$\sum_{t=0}^{\infty} \beta^t \Big[U(c_t^h, c_t^f) - v(\ell_t) \Big]$$

$$U(c_t^h, c_t^f) = \frac{\sigma}{\sigma - 1} \left[\omega(c_t^h)^{1 - \frac{1}{\gamma}} + (1 - \omega)(c_t^f)^{1 - \frac{1}{\gamma}} \right]^{\frac{\gamma}{\gamma - 1} \frac{\sigma - 1}{\sigma}}, \quad v(\ell_t) = \omega \frac{\ell_t^{1 + \psi}}{1 + \psi}$$

• Budget constraint:

$$P_t^h c_t^h + P_t^f (1 + \mathbf{\tau_t}) c_t^f + \frac{e_t b_{t+1}}{R^*} + \frac{B_{t+1}}{R_t} = e_t b_t + B_t + W_t \ell_t + T_t + D_t$$

- Law of one price (before tariffs): $P_t^h = e_t P_t^{h*}$, $P_t^f = e_t P_t^{f*}$
- Terms-of-trade exogenous $p \equiv \frac{P_t^{f*}}{p_{h*}}$ \Leftarrow Limit case w/ export elasticity = ∞

Firms

• Final good

$$Y_t = \left(\int_0^1 y \frac{\varepsilon - 1}{jt} dj\right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

• Intermediate goods

$$y_{jt} = \ell_{jt}$$

- Monopolistically competitive with Rotemberg price adjustment costs
- ▶ Constant subsidy to correct markup distortion

Firms

• Final good

$$Y_t = \left(\int_0^1 y \frac{\varepsilon - 1}{jt} dj\right)^{\frac{\varepsilon}{\varepsilon - 1}}$$

Intermediate goods

$$y_{jt} = \ell_{jt}$$

- ▶ Monopolistically competitive with Rotemberg price adjustment costs
- Constant subsidy to correct markup distortion
- ▶ Dividends:

$$\frac{D_t}{P_t^h} = (1+s) y_t - \frac{W_t}{P_t^h} \ell_t - \Upsilon \frac{\varphi}{2} \pi_t^2 y_t, \quad \text{with } \Upsilon \in (0,1)$$

Fraction Υ of price adjustment costs are deadweight losses (rest is rebated)

$$\pi_t \equiv P_t^h/P_{t-1}^h - 1$$
 is PPI inflation

Competitive Equilibrium

Given b_0 , a government policy $\{\tau_t, s, T_t\}$, and monetary policy $\{R_t\}$, a competitive equilibrium is a set of allocations $\{b_{t+1}, c_{t+1}^f, c_{t+1}^h\}$ and prices $p, \{P_t^h, e_t, W_t\}$ such that

- 1. Households optimize + Firms optimize
- 2. Government budget constraint holds: $\tau_t p c_t^f = \frac{T_t}{P_t^h} + s y_t$
- 3. Labor markets clear $\ell_t = \int_0^1 \ell_{jt} dj$

Country budget constraint:

$$\underbrace{\left(1 - \Upsilon \frac{\varphi}{2} \pi^2\right) \ell_t - c_t^h}_{\text{exports}} - \underbrace{pc_t^f}_{\text{imports}} = \underbrace{\frac{b_{t+1}}{R^*} - b_t}_{\text{capital outflows}}$$

Competitive equilibrium

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_t(c_t^h, c_t^h)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1}$$

 $\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{D^*} - b_t$

 $\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1 + \mathbf{\tau_t})$

 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$

Competitive equilibrium

$$)\pi_{t+1}$$

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1 + \mathbf{\tau}_t)$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$a_h(c_{t+1}, c_t)$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Competitive equilibrium

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1 + \mathbf{\tau_t})$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{D^*} - b_t$$

- Tariffs: distort MRS = p constraint
- Sticky prices: labor wedge & inflation costs

Efficient allocation

$$\frac{v'(\ell_t)}{1 + (\ell_t)} = 1$$

$$u_f(c_t^h, c_t^f) = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{P^*} - b_t$$

Competitive equilibrium $\tau = 0$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{dt} =$$

$$h(c_t^h, c_t^f)$$

$$c_h(c_t^h, c_t^f)$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$\left(1-\Upsilon\frac{\varphi}{2}\pi_t^2\right)\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Competitive equilibrium
$$\tau = 0$$
 (with $\pi_t = 0$)

$$0 = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right]$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$u_h(c_t^a, c_t^f)$$

 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} =$$

Efficient allocation

$$c_h(c_t^h, c_t^s)$$

 $c_h(c_t^h, c_t^f) = \beta R^* u_h(c_t^h, c_t^f)$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$u_h(c_t^h, c_t^I) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^I)$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Competitive equilibrium $\tau > 0$

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1 + \tau_t)$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\left(1 - \gamma \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^b - p c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Efficient allocation

$$\frac{v'(\ell_t)}{v(c^h,c^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = R P^*$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\ell_t - c_t^h - pc_t^f = \frac{b_{t+1}}{R^*} - b_t$$

Definition: A policy of **look-through** targets PPI inflation, $\pi_t = 0$ for all t

Definition: A policy of **look-through** targets PPI inflation, $\pi_t = 0$ for all t

• Closes labor wedge and replicates flex-price allocation

→ Absent tariffs, this is optimal ← Divine coincidence

Definition: A policy of **look-through** targets PPI inflation, $\pi_t = 0$ for all t

• Closes labor wedge and replicates flex-price allocation

$$\rightarrow$$
 Absent tariffs, this is optimal \Leftarrow Divine coincidence

Proposition. Assume that $\beta R^* = 1, \tau_t = \tau$. Then, employment is given by

$$\ell_{t}(\tau) = \left[\frac{\Theta_{\tau} + \tau}{1 + \tau} \left(\omega\Theta_{\tau}\right)^{\frac{\sigma - \gamma}{\gamma - 1}}\right]^{\frac{1}{1 + \sigma\psi}}, \qquad \Theta_{\tau} \equiv 1 + \left(\frac{1 - \omega}{\omega}\right)^{\gamma} \left(p(1 + \tau)\right)^{1 - \gamma} > 1$$

Definition: A policy of **look-through** targets PPI inflation, $\pi_t = 0$ for all t

• Closes labor wedge and replicates flex-price allocation

Absent tariffs, this is optimal ← Divine coincidence

Proposition. Assume that $\beta R^* = 1, \tau_t = \tau$. Then, employment is given by

$$\ell_{t}(\tau) = \left[\frac{\Theta_{\tau} + \tau}{1 + \tau} \left(\omega\Theta_{\tau}\right)^{\frac{\sigma - \gamma}{\gamma - 1}}\right]^{\frac{1}{1 + \sigma\psi}}, \qquad \Theta_{\tau} \equiv 1 + \left(\frac{1 - \omega}{\omega}\right)^{\gamma} \left(p(1 + \tau)\right)^{1 - \gamma} > 1$$

and

$$c_t^h(\tau) = \frac{1+\tau}{\Theta_{\tau} + \tau} \ell_t(\tau), \qquad c_t^f(\tau) = \frac{\Theta_{\tau} - 1}{p(\Theta_{\tau} + \tau)} \ell_t(\tau)$$

$$\frac{d \log \ell(\tau)}{d \tau} = - \frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} [\sigma \Theta_{\tau} + (\sigma - \gamma)\tau]$$

• Under look-through policy ~>> flex-price allocation

$$\frac{d \log \ell(\tau)}{d \tau} = - \frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} \left[\sigma \Theta_{\tau} + (\sigma - \gamma)\tau \right]$$

- Three goods, two changes in relative prices:
 - 1. Substitution (c^f, ℓ)
 - Tariff reduces the real wage in terms of $c^f \Rightarrow$ substitution away from labor
 - 2. Substitution (c^f, c^h)
 - $-\sigma > \gamma$ goods are Hicksian complements \Rightarrow labor unambiguously falls
 - $-\sigma < \gamma$ goods are Hicksian substitutes ⇒ labor increases for large τ

$$\frac{d \log \ell(\tau)}{d\tau} = -\frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} \left[\sigma \Theta_{\tau}\right] < 0$$

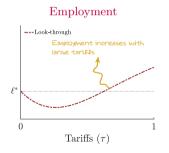
- For small τ , increase in tariffs are always contractionary
 - Consumption rebalancing towards c^h leads to $\downarrow u_h$, which implies in a flex-price eqm. a lower level of employment

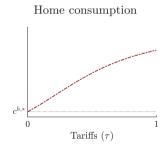
$$\frac{d \log \ell(\tau)}{d \tau} = - \frac{(\Theta_{\tau} - 1)}{(1 + \sigma \psi)(1 + \tau)(\Theta_{\tau} + \tau)\Theta_{\tau}} \left[\sigma \Theta_{\tau} + (\sigma - \gamma)\tau \right]$$

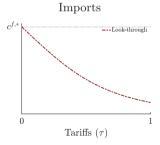
- For small τ , increase in tariffs are always contractionary
 - Consumption rebalancing towards c^h leads to $\downarrow u_h$, which implies in a flex-price eqm. a lower level of employment
- For large τ , ambiguous.

Illustration: Hicksian Substitutes

$$\sigma = 1/2, \ \gamma = 4$$







Ramsey Optimal Monetary Policy

$$\stackrel{\cong}{\sim} t \left[\begin{array}{cc} b & f \\ \end{array} \right]$$

$$\sum_{n=0}^{\infty} at \left[(h + f) (n) \right]$$

$$\max_{b_{t+1},\ell_t,c_t^f,c_t^h} \sum_{t=0}^{\infty} \beta^t \left[u(c_t^h,c_t^f) - v(\ell_t) \right],$$

 $(1+\pi_t)\,\pi_t = \frac{\varepsilon}{\varphi} \left| \frac{v'(\ell_t)}{u_t(ch_c f)} - 1 \right| + \frac{\ell_{t+1}}{\ell_t} \frac{(1+\pi_{t+1})\pi_{t+1}}{R^*}.$

$$\max_{\pi_t, b_{t+1}, \ell_t, c_t^f, c_t^h} \sum_{t=0}^{\infty} \beta^t \left[u(c_t^h, c_t^f) - v(\ell_t) \right],$$

s.t. $c_t^h + p c_t^f + \frac{b_{t+1}}{R^*} = b_t + \ell_t \left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2 \right),$

 $\frac{u_f(c_t^h c_t^f)}{u_f(c_t^h c_t^f)} = p(1 + \mathbf{\tau}_t),$

 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f),$

$$\max_{\pi_{t}, b_{t+1}, \ell_{t}, c_{t}^{f}, c_{t}^{h}} \sum_{t=0}^{\infty} \beta^{t} \left[u(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t}) \right], \qquad \Upsilon = 0,$$
s.t.
$$c_{t}^{h} + p c_{t}^{f} + \frac{b_{t+1}}{R^{*}} = b_{t} + \ell_{t},$$

$$\frac{u_{f}(c_{t}^{h} c_{t}^{f})}{u_{h}(c_{t}^{h} c_{t}^{f})} = p (1 + \tau_{t}),$$

$$u_{h}(c_{t}^{h}, c_{t}^{f}) = \beta R^{*} u_{h}(c_{t+1}^{h}, c_{t+1}^{f}),$$
Sticky prices induce costs only from output gap (will relax later)

$$(1+\pi_t)\,\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h,c_t^f)} - 1 \right] + \frac{\ell_{t+1}}{\ell_t} \, \frac{(1+\pi_{t+1})\pi_{t+1}}{R^*}.$$

$$\max_{b_{t+1},\ell_t,c_t^f,c_t^h} \sum_{t=0}^{\infty} \beta^t \left[u(c_t^h, c_t^f) - v(\ell_t) \right], \qquad \Upsilon = 0,$$

s.t.
$$c_t^h + p c_t^f + \frac{b_{t+1}}{P^*} = b_t + \ell_t$$
,

$$r = v_t + c$$

$$\frac{u_f(c_t^h c_t^f)}{u_h(c_t^h c_t^f)} = p(1 + \tau_t),$$

 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f).$

$$\max_{\ell, c^f, c^h} \sum_{t=0}^{\infty} \beta^t \left[u(c^h, c^f) - v(\ell) \right], \qquad \Upsilon = 0, \ \tau_t = \tau, \ \beta R^* = 1$$

s.t.
$$c^h + p c^f + \frac{b}{R^*} - b = \ell$$
,
$$\frac{u_f(c^h c^f)}{u_h(c^h c^f)} = p (1 + \tau),$$

$$\max_{\ell, c^f, c^h} \sum_{t=0}^{\infty} \beta^t \left[u(c^h, c^f) - v(\ell) \right], \quad \text{Assume } \Upsilon = 0, \ \tau_t = \tau, \ \beta R^* = 1$$

s.t.
$$c^h + p c^f + \frac{b}{R^*} - b = \ell$$
, Planner picks ℓ ;

Households choose c^h , c^f
 $\frac{u_f(c^h c^f)}{u_h(c^h c^f)} = p(1+\tau)$,

$$\max_{\substack{\ell,c^f,c^h}} \sum_{t=0}^{\infty} \beta^t \left[u(c^h,c^f) - v(\ell) \right], \quad \text{Assume } \Upsilon = 0, \ \tau_t = \tau, \ \beta R^* = 1$$

s.t.
$$c^h + p c^f + \frac{b}{R^*} - b = \ell$$
, Planner picks ℓ ;

Households choose c^h , c^f

$$\frac{u_f(c^h c^f)}{u_h(c^h c^f)} = p (1 + \tau),$$

Proposition: Under optimal monetary policy, the level of employment is

$$\ell_t^{opt}(\tau) = \left(\frac{1+\tau}{1+\Theta_{\tau}^{-1}\tau}\right)^{\frac{\sigma}{1+\sigma\psi}} \left[\frac{\Theta_{\tau}+\tau}{1+\tau}(\omega\Theta_{\tau})^{\frac{\sigma-\gamma}{\gamma-1}}\right]^{\frac{1}{1+\sigma\psi}} > \ell_t^{\text{look}}(\tau).$$

$$\max_{\ell, c^f, c^h} \sum_{t=0}^{\infty} \beta^t \left[u(c^h, c^f) - v(\ell) \right], \quad \text{Assume } \Upsilon = 0, \ \tau_t = \tau, \ \beta R^* = 1$$

s.t.
$$c^h + p c^f + \frac{b}{R^*} - b = \ell$$
,

Planner picks ℓ ;

Households choose c^h , c^f
 $\frac{u_f(c^h c^f)}{u_f(c^h c^f)} = p(1+\tau)$,

Proposition: Under optimal monetary policy, the level of employment is

$$\ell_t^{opt}(\tau) = \left(\frac{1+\tau}{1+\Theta_{\tau}^{-1}\tau}\right)^{\frac{\sigma}{1+\sigma\psi}} \left[\frac{\Theta_{\tau}+\tau}{1+\tau}\left(\omega\Theta_{\tau}\right)^{\frac{\sigma-\gamma}{\gamma-1}}\right]^{\frac{1}{1+\sigma\psi}} > \ell_t^{\text{look}}(\tau).$$

$$c_t^h(\tau) = \frac{1+\tau}{\Theta_{\sigma}+\tau}\ell_t^{opt}(\tau), \qquad c_t^f(\tau) = \frac{\Theta_{\tau}-1}{n\left(\Theta_{\sigma}+\tau\right)}\ell_t^{opt}(\tau)$$

Households "indirect utility" as a function of c^f

$$\mathbf{W}(c^f; \tau) \equiv u \left(\mathbf{L}(c^f) + \mathbf{T}(c^f) - p(1+\tau)c^f, c^f \right) - v \left(\mathbf{L}(c^f) \right)$$
employment $\frac{\Theta_{\tau} + \tau}{\Theta_{\tau} - 1} pc^f$
revenue $p\tau c^f$

Households "indirect utility" as a function of c^f

$$\mathbf{W}(c^f;\tau) \equiv u\left(\mathbf{L}(c^f) + \mathbf{T}(c^f) - p(1+\tau)c^f, c^f\right) - v\left(\mathbf{L}(c^f)\right)$$
 employment $\frac{\Theta_{\tau} + \tau}{\Theta_{\tau} - 1}pc^f$ revenue $p\tau c^f$

Optimality

labor wedge must be negative
$$-\frac{\partial \mathbf{L}}{\partial c^f} \left[1 - \frac{v'(\ell)}{u_h(c^h, c^f)} \right] = \underbrace{\frac{\partial \mathbf{T}}{\partial c^f}}_{\text{fiscal externality}>0}$$

Households "indirect utility" as a function of c^f

$$\mathbf{W}(c^f;\tau) \equiv u\left(\mathbf{L}(c^f) + \mathbf{T}(c^f) - p(1+\tau)c^f, c^f\right) - v\left(\mathbf{L}(c^f)\right)$$
employment $\frac{\Theta_{\tau} + \tau}{\Theta_{\tau} - 1}pc^f$ revenue $p\tau c^f$

Optimality

$$-\frac{\partial \mathbf{L}}{\partial c^f} \left[1 - \frac{v'(\ell)}{u_h(c^h, c^f)} \right] = \underbrace{\frac{\partial \mathbf{T}}{\partial c^f}}_{\text{fiscal externalit}}$$

labor wedge must be negative

fiscal externality>0

- Households do not internalize that $\uparrow c^f$ raises tariff revenue and agg. income
 - ▶ Optimal policy tries to mitigate externality by stimulating employment

Households "indirect utility" as a function of c^f

$$\mathbf{W}(c^f;\tau) \equiv u\left(\mathbf{L}(c^f) + \mathbf{T}(c^f) - p(1+\tau)c^f, c^f\right) - v\left(\mathbf{L}(c^f)\right)$$
 employment $\frac{\Theta_{\tau} + \tau}{\Theta_{\tau} - 1}pc^f$ revenue $p\tau c^f$

Optimality

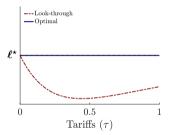
labor wedge must be negative
$$-\frac{\partial \mathbf{L}}{\partial c^f} \left[1 - \frac{v'(\ell)}{u_h(c^h, c^f)} \right] = \underbrace{\frac{\partial \mathbf{T}}{\partial c^f}}_{\text{fiscal externality} > 0}$$
fiscal externality > 0

- Households do not internalize that $\uparrow c^f$ raises tariff revenue and agg. income
 - ▶ Optimal policy tries to mitigate externality by stimulating employment
- Without fiscal rebate: flex-price allocation is efficient \Rightarrow zero labor wedge and $\pi_t = 0$

When Are Tariffs Cost-Push Shocks?

Illustration with $\gamma = 4$

(b)
$$\sigma = 1$$



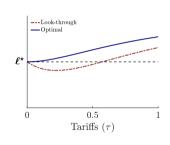
• keeps employment at the efficient level — it falls under look-through

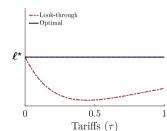
When Are Tariffs Cost-Push Shocks?

Illustration with $\gamma = 4$

(a)
$$\sigma = 0.5$$

(b)
$$\sigma = 1$$



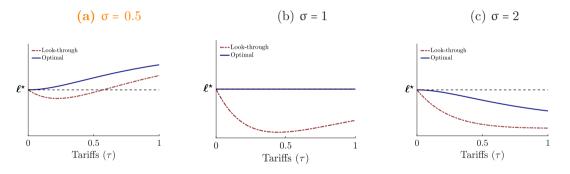


• employment increases (positive output gap) in response to tariffs

→ ≠ textbook cost-push shock

When Are Tariffs Cost-Push Shocks?

Illustration with $\gamma = 4$



• employment increases (positive output gap) in response to tariffs

≯ ≠ textbook cost-push shock

Quantitative Analysis

Standard NK assumption: price adjustment costs are not rebated, $\Upsilon=1$

- With $\Upsilon = 0$, optimal policy generates a permanent output boom and inflation
- With $\Upsilon > 0$, optimal policy remains expansionary:

Quantitative Analysis

Standard NK assumption: price adjustment costs are not rebated, $\Upsilon=1$

- With $\Upsilon = 0$, optimal policy generates a permanent output boom and inflation
- With $\Upsilon > 0$, optimal policy remains expansionary:
 - ▶ Starting from $\pi = 0$, costs of stimulating are second order, but there are first-order gains from mitigating fiscal externality
 - ▶ Stimulus only in the short-run ← inflation in the long-run is too costly

Calibration

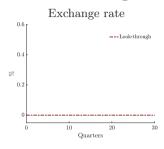
Parameter	Description	Value
β	Discount factor	0.99
γ	Elasticity between h and f	4
σ	Intertemporal elasticity	0.5
ψ	Inverse Frisch elasticity	1
ε	Elasticity of substitution (varieties)	6
φ	Price-adjustment cost	3,272

 \bullet Target: slope of PC=0.0055 (Hazell et al.) & ratio of imports to tradable GDP

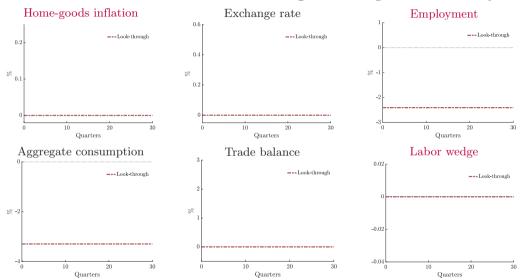
• Baseline tariff: $\tau_t = 15\%$

• Non-linear impulse response

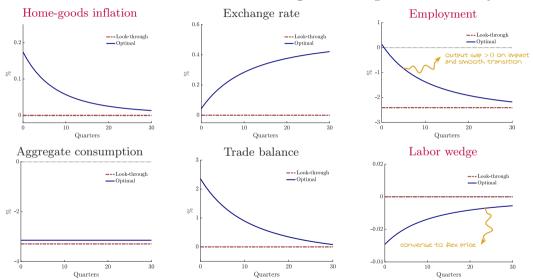
Permanent Tariff: Look-through



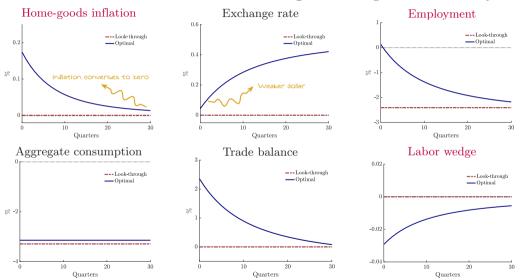
Permanent Tariff: Look-through vs. Optimal Policy



Permanent Tariff: Look-through vs. Optimal Policy



Permanent Tariff: Look-through vs. Optimal Policy



Additional Results

- Permanent shocks vs transitory » Details
- Anticipated shocks: » Details
 - ▶ Respond today, but less strongly
 - ▶ Trade deficit on impact
- PPI vs. CPI Targeting » Details
- Main extensions \(\square\) Nex
 - i) Endogenous Terms-of-Trade
 - ii) Intermediate inputs
 - iii) Distorted steady state

In the Paper

 \bullet Continuum of open economies where c^f is a CES composite of goods produced abroad

$$c_{it} = \left[\omega \left(c_{it}^{h}\right)^{1-\frac{1}{\gamma}} + (1-\omega) \left(c_{it}^{f}\right)^{1-\frac{1}{\gamma}}\right]^{\frac{\gamma}{\gamma-1}},$$

$$c_{it}^{f} = \left(\int_{0}^{1} \left(c_{it}^{k}\right)^{1-\frac{1}{\theta}} dk\right)^{\frac{\theta}{\theta-1}}$$

• Export demand for home good

$$p_t = A(y_t - c_t^h)^{\frac{1}{\theta}} \quad \Leftarrow \text{Baseline } \theta = \infty$$

• Optimal tariff is positive $\tau^* = \frac{1}{\theta - 1}$ with $\theta > 1$

Analytical results: no deadweight loss from price adjustment $\Upsilon = 0$

Proposition. Assume that $\beta R^* = 1$, $\Upsilon = 0$, $\tau_t = \tau^* + \Delta \tau$. Then, the labor wedge (\wp) under the optimal policy is given by

$$\wp_t = -\left[1 + \frac{\theta - 1 + \gamma}{\theta} \frac{c^h}{pc^f}\right]^{-1} \frac{\Delta \tau}{1 + \tau^*}$$

Analytical results: no deadweight loss from price adjustment $\Upsilon=0$

Proposition. Assume that $\beta R^* = 1$, $\Upsilon = 0$, $\tau_t = \tau^* + \Delta \tau$. Then, the labor wedge (\wp) under the optimal policy is given by

$$\wp_t = -\left[1 + \frac{\theta - 1 + \gamma}{\theta} \frac{c^h}{pc^f}\right]^{-1} \frac{\Delta \tau}{1 + \tau^*}$$

• Starting from this efficient tariff, the optimal monetary policy is expansionary in response to a tariff increase implies $[\wp < 0 \text{ if and only if } \Delta \tau > 0]$

Analytical results: no deadweight loss from price adjustment $\Upsilon = 0$

Proposition. Assume that $\beta R^* = 1$, $\Upsilon = 0$, $\tau_t = \tau^* + \Delta \tau$. Then, the labor wedge (\wp) under the optimal policy is given by

$$\wp_t = -\left[1 + \frac{\theta - 1 + \gamma}{\theta} \frac{c^h}{pc^f}\right]^{-1} \frac{\Delta \tau}{1 + \tau^*}$$

- Starting from this efficient tariff, the optimal monetary policy is expansionary in response to a tariff increase implies $[\wp < 0 \text{ if and only if } \Delta \tau > 0]$
- Generally, the optimal monetary policy is *more* expansionary in response to an increase in tariff $[\wp'(\tau) < 0]$

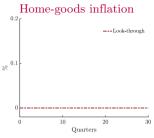
Analytical results: no deadweight loss from price adjustment $\Upsilon=0$

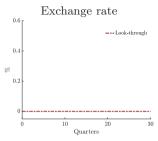
Proposition. Assume that $\beta R^* = 1$, $\Upsilon = 0$, $\tau_t = \tau^* + \Delta \tau$. Then, the labor wedge (\wp) under the optimal policy is given by

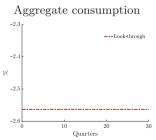
$$\wp_t = -\left[1 + \frac{\theta - 1 + \gamma}{\theta} \frac{c^h}{pc^f}\right]^{-1} \frac{\Delta \tau}{1 + \tau^*}$$

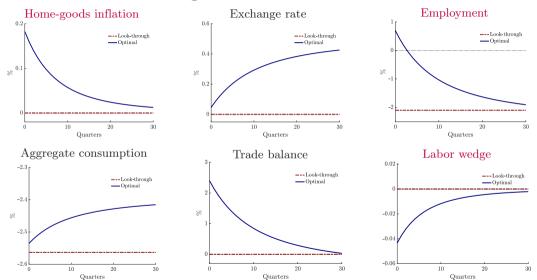
- Starting from this efficient tariff, the optimal monetary policy is expansionary in response to a tariff increase implies $[\wp < 0 \text{ if and only if } \Delta \tau > 0]$
- Generally, the optimal monetary policy is *more* expansionary in response to an increase in tariff $[\wp'(\tau) < 0]$

Quantitative results: $\Upsilon = 1$, $\theta = 10$ (Head and Ries, 2001)









As in the baseline, optimal policy implies positive output gap and inflation

Tariffs on Imported Inputs

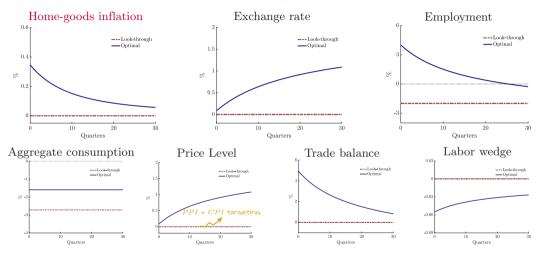
- Production of domestic varieties $y_{jt} = (\ell_{jt})^{1-\gamma} (x_{jt})^{\gamma}$
- NK Phillips curve:

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[mc_t - 1 \right] + \frac{1}{R} \frac{y_{t+1}}{y_t} (1+\pi_{t+1})\pi_{t+1},$$

$$mc_t = \left[\frac{W_t}{(1-\nu)P_t^h} \right]^{1-\nu} \left[\frac{p(1+\tau_t^x)}{\nu} \right]^{\nu}$$

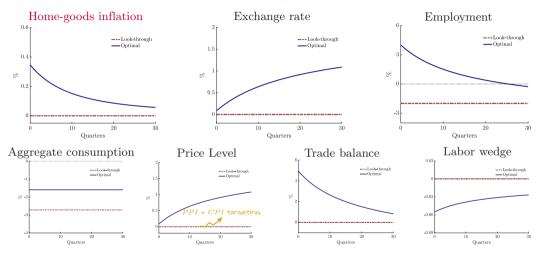
Same as baseline: firms perceive cost of imported inputs to be larger than social one
 ⇒ Optimal policy is stimulative

Tariff on Inputs Only



Calibrate v, ω to match (i) share of intermediate inputs in total imports; (ii) imports-to-tradable GDP

Tariff on Inputs Only



Calibrate ν, ω to match (i) share of intermediate inputs in total imports; (ii) imports-to-tradable GDP

• Tariffs on inputs and consumption * results

Welfare

	Optimal Policy	Tariff loss Optimal pol.	Tariff loss look-through
Baseline	0.01	0.99	1.00
Anticipated tariffs	0.008	0.96	0.97
Endogenous TOT	0.007	0.68	0.69

Note: Welfare corresponds to permanent consumption equivalence (%).

Welfare

	Optimal Policy	Tariff loss Optimal pol.	Tariff loss look-through
Baseline	0.01	0.99	1.00
Anticipated tariffs	0.008	0.96	0.97
Endogenous TOT	0.007	0.68	0.69
${\it Model w/ imported inputs}$			
Tariffs on c and x	0.32	1.61	1.91
Tariffs on c	0.01	1.00	1.01
Tariffs on x	0.22	0.59	0.80

 $\it Note:$ Welfare corresponds to permanent consumption equivalence (%).

The case with distorted steady state

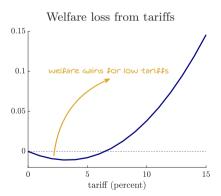
ullet Baseline model: labor subsidy s is set to offset markup distortion

The case with distorted steady state

- Suppose we start at s=0 and use tariff revenue to subsidize labor $P_t^f \tau_t c_t^f = s_t W_t \ell_t$
 - ▶ Unambiguous increase in employment
 - ▶ Output gap remains positive but rise in inflation is mitigated → results

The case with distorted steady state

- Suppose we start at s=0 and use tariff revenue to subsidize labor $P_t^f \tau_t c_t^f = s_t W_t \ell_t$
 - ▶ Unambiguous increase in employment
 - ▶ Output gap remains positive but rise in inflation is mitigated → results



Note: All parameters are set to their baseline values.

Conclusions

- How should a monetary authority should respond to import tariffs?
- Optimal policy is to overheat economy: to offset fiscal externality, need monetary stimulus, letting inflation rise above and beyond the direct effects from tariffs

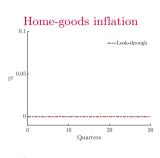
Conclusions

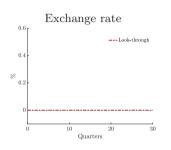
- How should a monetary authority should respond to import tariffs?
- Optimal policy is to overheat economy: to offset fiscal externality, need monetary stimulus, letting inflation rise above and beyond the direct effects from tariffs
- Ongoing/future work:
 - ▶ Discretion vs. commitment, richer supply chains, uncertainty, spillovers

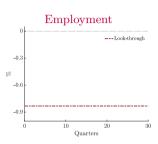
Efficient Allocation

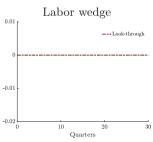
$$\max_{\left\{b_{t+1}, c_{t}^{f}, c_{t}^{h}, \ell_{t}\right\}} \sum_{t=0}^{\infty} \beta^{t} \left[u(c_{t}^{h}, c_{t}^{f}) - v(\ell_{t})\right],$$
s.t $c_{t}^{h} + pc_{t}^{f} + \frac{b_{t+1}}{R^{*}} = b_{t} + \ell_{t}.$

Temporary Tariff $\tau_t = 0.97 \cdot \tau_{t-1} \rightarrow \text{back}$

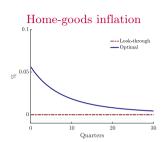


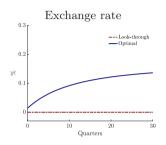


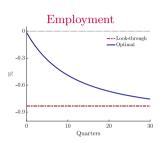


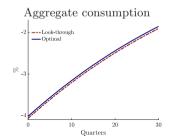


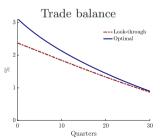
Temporary Tariff $\tau_t = 0.97 \cdot \tau_{t-1} \rightarrow backet$

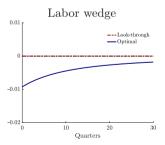




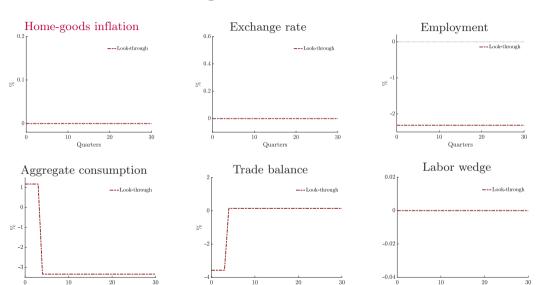








Anticipation Effects - back



Quarters

Quarters

Quarters

Anticipation Effects → back

Quarters

---Look-through

- Optimal

20

---Look-through

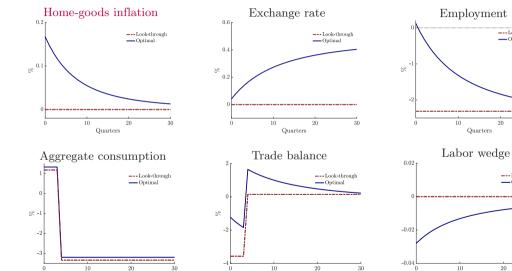
- Optimal

20

Quarters

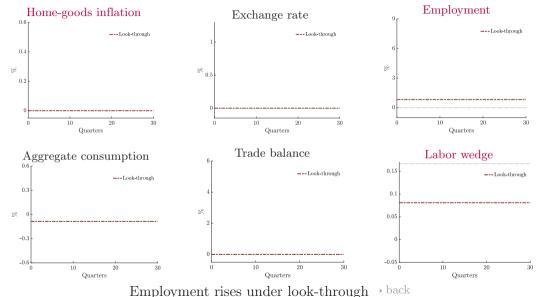
30

30

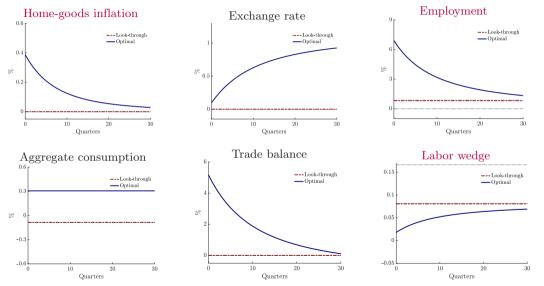


Quarters

Distorted Steady State: Tariff Revenue to Subsidize Wage Bill

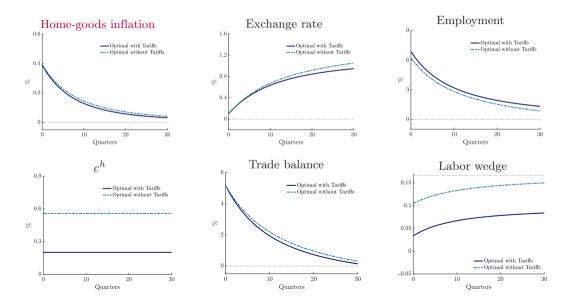


Distorted Steady State: Tariff Revenue to Subsidize Wage Bill

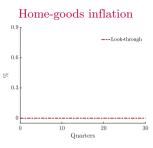


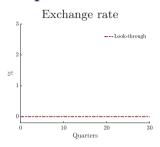
Effect of tariff and labor subsidy cancel out approx. on inflation back

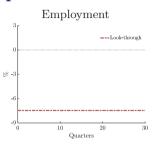
The Case with Distorted Steady State back

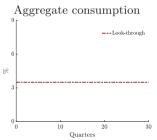


Tariffs on Inputs and Consumption





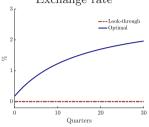




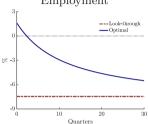
-

Tariffs on Inputs and Consumption

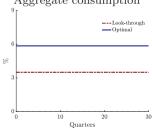
Exchange rate



Employment



Aggregate consumption

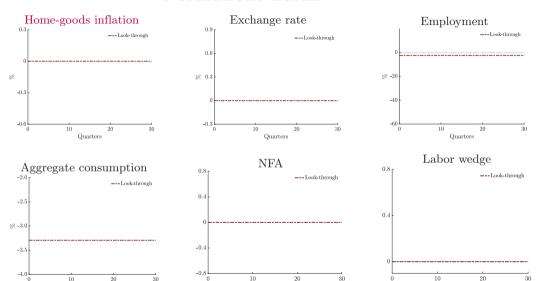


Trade balance

Labor wedge

-

Permanent Tariff *Back

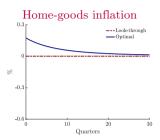


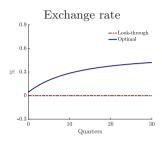
Quarters

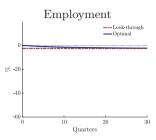
Quarters

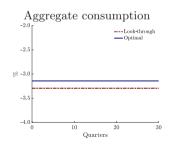
Quarters

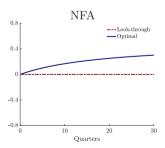
Permanent Tariff *Back

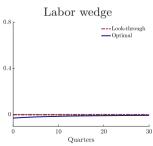




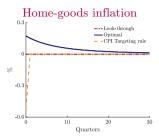


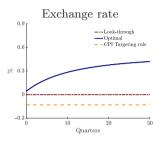


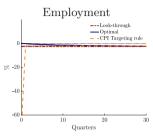


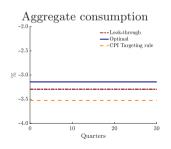


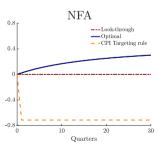
Permanent Tariff *Back

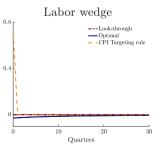




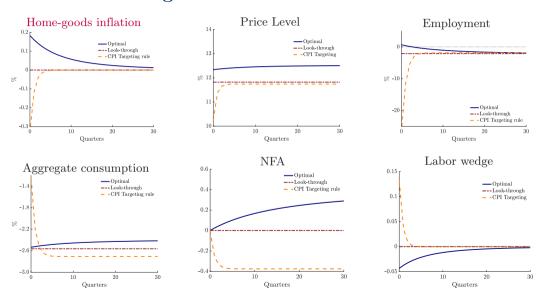




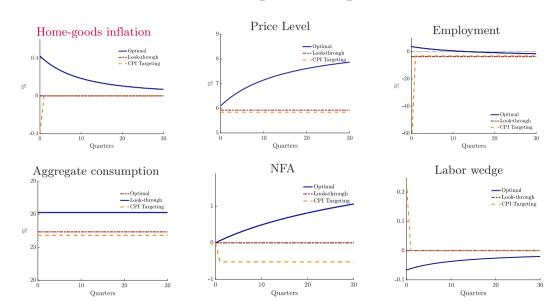




Endogenous Terms of Trade » Back



Model with Imported Inputs »Back



CPI vs PPI targeting *Back

• Consider now CPI targeting where the policy rate follows

» impulse responses

$$R_t = \bar{R}_t \left(\frac{\mathcal{P}_t^c}{\mathcal{P}_{t-1}^c} \right)^{\Phi_{\pi}} \quad \text{with} \quad \bar{R}_t \equiv R^* \frac{e_{t+1}}{\bar{e}_t} \quad \text{and} \quad \Phi_{\pi} > 0$$

• $\phi_{\pi} = 0$ corresponds to "look-through policy" or PPI targeting (our benchmark)

CPI vs PPI targeting » Back

• Consider now CPI targeting where the policy rate follows

» impulse responses

$$R_t = \bar{R}_t \left(\frac{\mathcal{P}_t^c}{\mathcal{P}_{t-1}^c}\right)^{\phi_{\pi}} \quad \text{with} \quad \bar{R}_t \equiv R^* \frac{e_{t+1}}{\bar{e}_t} \quad \text{and} \quad \phi_{\pi} > 0$$

• $\phi_{\pi} = 0$ corresponds to "look-through policy" or PPI targeting (our benchmark)

	Gains Optimal Policy			Losses from Tariffs		
	$\phi_{\pi} = 0$	ϕ_{π} = 1.5	$\phi_{\pi} = 5$	$\phi_{\pi} = 0$	ϕ_{π} = 1.5	$\phi_{\pi} = 5$
Baseline	0.01	0.26	2.73	1.00	1.25	3.77
Anticipated tariffs	0.008	0.26	0.67	0.97	1.22	1.64
Endogenous TOT	0.006	0.04	0.10	0.69	0.72	0.78
Model w/ imported inputs						
Tariffs on c and x	0.32	0.61	0.85	1.91	2.21	2.48
Tariffs on c	0.01	0.29	1.00	1.01	1.30	2.02
Tariffs on x	0.22	0.22	0.22	0.80	0.80	0.80

Efficient allocation

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{t+1}{\ell_t} (1+\pi_{t+1}) \pi_{t+1} = \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} =$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p(1+\tau) \qquad \frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$\frac{c_t^J}{c_t^f} = p$$

$$c_t^f = \beta I$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$u_{h}(c_{t}^{h}, c_{t}^{f}) = \beta R^{*} u_{h}(c_{t+1}^{h}, c_{t+1}^{f})$$
$$\ell_{t} - c_{t}^{h} - p c_{t}^{f} = \frac{b_{t+1}}{R^{*}} - b_{t}$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h$$

 $\left(1 - \Upsilon \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - \left(p(1+\tau)\right) c_t^f = \frac{b_{t+1}}{R^*} - b_t$

Same eqm. conditions as with TOT shock $\rightarrow \widehat{p} \equiv p(1+\tau)$

Efficient allocation

$$(1+\pi_t)\pi_t = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] + \frac{1}{R^*} \frac{\ell_{t+1}}{\ell_t} (1+\pi_{t+1})\pi_{t+1} \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{v'(\ell_t)}{v_t(a^h, a^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = \widehat{p}$$

$$u_h(c_t^h, c_t^f) = \beta I$$

$$\frac{(c, c_t^f)}{(c, c_t^f)} = c_t^f$$

$$u_h(c_t, c_t)$$

$$u_h(c_t, c_t)$$

$$u_t(c_t^h, c_t^f)$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f)$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f) \qquad u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$(c_t^{ii}, c_t^j) = \beta R^{ij}$$

$$h = mc^f = b_{t+1}$$

$$u_h(c_t^*, c_t^*) = \beta R^* u_h(c_{t+1}^*, c_{t+1}^*)$$

$$\left(1 - \gamma \frac{\varphi}{2} \pi_t^2\right) \ell_t - c_t^h - \widehat{p} c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$\ell_t - c_t^h - \mathbf{p} c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$\frac{u_h(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = \widehat{p}$$

Flex-price allocation ($\pi_t = 0$) coincides with efficient with different TOT

Efficient allocation

$$0 = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right]$$
$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = \widehat{p}$$

 $\ell_t - c_t^h - \widehat{p} c_t^f = \frac{b_{t+1}}{P^*} - b_t$

$$\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta$$

$$u_h(c_t^h, c_t^f) = p$$
 $u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$
$$\ell_t - c_t^h - \mathbf{p} c_t^f = \frac{b_{t+1}}{D^*} - b_t$$

With a genuine rise in cost, optimal to let imports fall and set $\pi_t = 0$.

Efficient allocation

$$0 = \frac{\varepsilon}{\varphi} \left[\frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} - 1 \right] \qquad \frac{v'(\ell_t)}{u_h(c_t^h, c_t^f)} = 1$$

$$\frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = \widehat{p} \qquad \frac{u_f(c_t^h, c_t^f)}{u_h(c_t^h, c_t^f)} = p$$

$$u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f) \qquad u_h(c_t^h, c_t^f) = \beta R^* u_h(c_{t+1}^h, c_{t+1}^f)$$

$$\ell_t - c_t^h - \qquad \widehat{p} c_t^f = \frac{b_{t+1}}{R^*} - b_t$$

$$\ell_t - c_t^h - p c_t^f = \frac{b_{t+1}}{R^*} - b_t$$