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1. Introduction

“So, of course, monetary policy does, famously, work with long and variable lags. The

way I think of it is, our policy decisions affect financial conditions immediately. In fact,

financial conditions have usually been affected well before we actually announce our deci-

sions. Then, changes in financial conditions begin to affect economic activity... within a

few months.” (Chair Jerome Powell’s Press Conference, September 21, 2022)

Monetary policy works by changing financial conditions– a summary measure of ag-

gregate asset prices– which then transmits to the real economy with a lag.1 In this paper,

we turn these observations into an asset pricing model. The key idea is to reverse engi-

neer the Fed’s policy problem to solve for the aggregate asset price per potential output

that ensures future macroeconomic balance under the Fed’s beliefs (“pystar”). When the

Fed is unconstrained and acts optimally, asset prices cannot deviate much from “pystar.”

For example, during the late stages of the Covid-19 recovery, we saw several episodes

where markets attempted to rebound. However, these rallies were quickly reversed by a

Fed speech or a policy announcement, since the Fed believed the economy needed tight

financial conditions to reduce inflation.

Our model features a two-speed economy: a slow and unsophisticated macroeconomic

side and a fast and sophisticated financial market side. The two-speed is a realistic feature,

as emphasized by Chair Powell’s quote, and it enables us to introduce policy transmission

lags and other frictions that complicate monetary policy in practice. Specifically, in our

model spending decisions are made by a group of agents (“households”) that respond

to asset prices, but with noise, delays, and inertia.2 Asset pricing is determined by

a different group of agents (“the market”), who are forward looking, and immediately

react to economic shocks and the likely monetary policy response to those shocks. The

Fed wants to influence the behavior of households, but it needs to operate through the

market. Moreover, the market and the Fed have their own sets of beliefs about the future

1One of the most popular financial conditions index followed by practitioners is Goldman’s GSUSFCI
Index (see Hatzius and Stehn (2018)). Excluding house prices (for which there is no high frequency data),
the equity market dominates fluctuations in financial conditions in the US since 2000. The equity market
(measured as the Shiller’s P/E ratio) accounts for about 40 percent of the average annual absolute change
in financial conditions. This compares with less than 20% (each) for corporate spreads and riskless long
rates. See Hatzius et al. (2017). Recently, Ajello et al. (2023) propose a new financial conditions index
based on the FRB/US model, which carefully integrates the transmission lags of different asset prices and
spreads. Their estimates indicate that equity price increases, followed by house price increases, accounted
for the lion’s share of the policy-induced loosening in financial conditions during Covid-19 (until 2022).

2The model also has “hand-to-mouth”agents, but these only play a technical role, as they simplify
the labor supply side of the model and generate a Keynesian multiplier.
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state of the economy and the corresponding policy response. This means that the Fed

needs to closely monitor and “cooperate”with the market to control asset prices, and the

market needs to monitor the Fed to determine asset prices and the risk premium.

As a baseline, we start with a relatively standard model without transmission lags.

Specifically, households mostly follow the optimal consumption rule with log utility. They

respond to aggregate wealth immediately, with a constant marginal propensity to consume

(MPC) out of wealth. We allow for aggregate demand shocks, which we capture with

noisy deviations from the optimal consumption rule but could be interpreted as, e.g.,

MPC shocks or fiscal policy. This baseline model isolates a key mechanism that is at

the heart of several of our main results: “pystar” is driven by macroeconomic needs–

imbalances between aggregate demand and supply– rather than by financial forces such

as cash-flow expectations or risk premia. Aggregate asset prices should be such that they

induce households to spend just enough to ensure that output is at its potential. This

logic determines “pystar” purely from macroeconomic conditions, leaving no room for

traditional financial forces. In the background, the Fed adjusts the interest rate (or, in

practice, any other tool it may have available) to implement “pystar.”For instance, when

the market becomes more pessimistic about future cash flows, aggregate asset prices do

not decline because the Fed cuts the interest rate– providing an explanation for “the

Fed put.”Instead, these types of purely financial shocks drive relative asset prices, such

as the price of aggregate stocks vs aggregate bonds, subject to an adding-up constraint

determined by macroeconomic needs.

We then turn to our main model. The baseline model attributes too much power

to monetary policy and leaves no room for the Fed’s beliefs (or judgement) to affect

macroeconomic outcomes. In practice, monetary policy has much less control over ag-

gregate demand. A major reason for this lack of control is policy transmission lags.

These lags are empirically well documented and they make monetary policy diffi cult and

belief-dependent: the Fed needs to forecast future macroeconomic conditions because it

effectively sets policy for a future period. The core of the paper introduces transmission

lags and related realistic frictions, and derives their implications for aggregate asset prices.

We start by analyzing pure transmission lags, which we capture by making households

respond to asset prices with a lag. In this setup, we show that the Fed’s beliefs about future

aggregate demand and supply drive “pystar.”When the Fed expects aggregate demand to

be relatively low or aggregate supply to be relatively high (as in the Covid-19 recovery), it

targets higher asset prices. Conversely, when the Fed expects high demand or low supply,

it sets lower asset prices. In this context, asset prices fluctuate with macroeconomic

news about future demand or supply that shifts the Fed’s beliefs. More precise news
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about future aggregate demand makes output less volatile but, perhaps surprisingly, it

also makes the aggregate asset price more volatile. As the Fed’s ability to forecast the

future improves, the Fed preempts and mitigates demand-driven business cycles, but the

Fed achieves this stability in the real economy by inducing larger fluctuations in financial

markets.

We then turn to a richer setup that additionally features internal demand inertia:

along with responding to asset prices with a lag, households partly repeat their own past

spending behavior. Internal inertia and transmission lags are closely related because at a

microeconomic level they emerge from the same frictions that generate inertial behavior,

such as adjustment costs or habit formation. When we allow for internal demand inertia,

current output persists into the future even if the driving shocks are not persistent. The

Fed then targets a “pystar” that neutralizes the future effects of current output. When

output is below (resp. above) its potential, the Fed overshoots asset prices upward (resp.

downward) to achieve macroeconomic balance faster. This overshooting seemingly creates

a disconnect between the performance of the real economy and financial markets, but it

also accelerates the recovery.

For simplicity, in most of the paper we assume fully sticky good prices. When we

endogenize inflation via a standard New Keynesian Phillips Curve (NKPC), we find that

inflation is negatively correlated with aggregate asset prices, regardless of whether inflation

is driven by demand or supply shocks. This result is driven by two observations. First,

with transmission lags the Fed stabilizes the expected future output gaps and inflation,

but it cannot stabilize the current output gap. Therefore, inflation depends only on the

current output gap. Second, both demand and supply shocks induce a negative covariance

between the current output gap and aggregate asset prices. A positive demand shock

raises the output gap (and inflation) and induces the Fed to overshoot asset prices in the

downward direction. A negative supply shock also raises the output gap (and inflation)

and induces the Fed to target a lower asset price to align the future demand with the

lower level of supply. It follows that in our model inflation is bad news for asset prices.

This also implies that the inflation risk premium is typically positive: the expected real

return on the nominal risk-free asset (which is subject to inflation risk) usually exceeds

the return on the real risk-free asset (which is inflation-protected).

Since the Fed’s beliefs about the future state of the economy drive asset prices, our

final set of results investigate what happens when the Fed and the market have belief

disagreements– as we routinely see in practice. Our earlier results are robust to disagree-

ments: the Fed still implements the “pystar” that is appropriate under its own belief.

However, disagreements affect the risk premium and the policy interest rate. When the
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market disagrees with the Fed, it perceives policy “mistakes.”The market’s anticipation

of future disagreements and “mistakes” increases the aggregate risk premium– we refer

to this as a policy risk premium. In addition, current disagreements create a “behind-the-

curve”phenomenon where the market expects the Fed to reverse course. For instance, a

demand-optimistic market (that expects higher aggregate demand than the Fed) thinks

a dovish Fed will induce a positive output gap, after which it will have to reverse course

and overshoot asset prices downward. We further show that disagreements affect the in-

terest rate the Fed needs to set to achieve “pystar.”The market’s perception that the Fed

is behind-the-curve and will make future “mistakes” exerts pressure on aggregate asset

prices. In equilibrium, the Fed adjusts the interest rate to absorb this pressure and keep

the asset price at “pystar”(in line with “the Fed put/call”).

Literature review. This paper is about the interaction between monetary policy, finan-

cial markets, and business cycles. Our earlier work on this subject focused on spillover

effects from financial markets to macroeconomic outcomes. When monetary policy is

constrained, financial market shocks or frictions– such as time-varying risk premia or

financial speculation– can cause aggregate demand recessions and motivate prudential

policies (see, e.g., Caballero and Simsek (2020, 2021c); Pflueger et al. (2020); Caballero

and Farhi (2018)). Likewise, policy constraints and financial frictions can amplify sup-

ply shocks and motivate unconventional monetary policy (see, e.g., Caballero and Simsek

(2021a)). This paper uses a similar conceptual framework but focuses on the spillback

effects from macroeconomic needs to financial markets. To make these needs realistic,

we enrich the macroeconomics side of our earlier model with ingredients such as demand

shocks, transmission lags, and demand inertia. We focus on the asset pricing implications

of a monetary policy framework aimed at stabilizing this richer economy.

In terms of the specific modeling ingredients, we build on some of the insights in our

recent work. In Caballero and Simsek (2021b), we showed that demand inertia induces

the Fed to generate a temporary disconnect between the real economy and asset prices.

In Caballero and Simsek (2022a), we began our exploration of the consequences of dis-

agreements between the Fed and the market for optimal monetary policy. The former

paper studies a one-off shock, while the latter paper’s analysis is conducted within a

standard log-linearized New Keynesian model (without explicit asset prices or risk). This

paper integrates the monetary policy insights of both papers into a proper asset pric-

ing model with risk and risk-premia. This integration uncovers several new results that

have no counterparts in our earlier work. Among other results, we show that the Fed’s

beliefs drive asset prices, inflation is negatively correlated with aggregate asset prices,
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and the Fed-market disagreements induce a policy risk premium and a behind-the-curve

phenomenon.

Contemporaneously, Bianchi et al. (2022a,b) build and estimate models in which as-

set prices, like in our model, are determined by forward-looking agents (“investors”),

whereas the macroeconomic dynamics are driven by less sophisticated agents with iner-

tial beliefs (“households”). They emphasize that investors’beliefs about monetary policy

regimes affect asset prices. A key substantive difference between our models is that in ours

macroeconomic outcomes are affected by asset prices. This channel drives our results, as

it provides the rationale for the Fed to target asset prices.

In our model, the Fed is concerned about asset prices primarily due to their impact

on aggregate demand. This perspective aligns with that of Bernanke and Gertler (2000,

2001), who argue that the Fed should not stabilize asset prices per se– it should instead

stabilize the inflationary and disinflationary pressures generated by asset price fluctua-

tions. Our paper complements Bernanke and Gertler (2000, 2001) in the sense that they

focus on the optimal monetary policy implied by this perspective, while we focus on the

implications for asset prices and the risk premium. The connection between the Fed and

asset prices is also present in an emergent New Keynesian literature with explicit risk mar-

kets (Caballero and Simsek (2020); Kekre and Lenel (2021); Pflueger and Rinaldi (2020)).

That literature focuses on risk-market shocks or monetary policy shocks, whereas we focus

on macroeconomic shocks and highlight how they can spill back to risk markets through

the Fed’s response to these shocks. Also, in that literature the Fed is often embedded in

a Taylor-type rule, rather than being an optimizing agent with its own set of beliefs.3

The idea that asset prices are influenced by macroeconomic conditions is familiar from

consumption-based asset pricing models (e.g., Lucas (1978)). Relative to this literature,

our model has two distinct features: Output is determined by aggregate demand (due to

nominal rigidities) and policy affects output with lags. These features create a central role

for the Fed: in our model, asset prices are driven by macroeconomic conditions filtered

through the Fed’s beliefs.

There is an extensive finance literature documenting “excess”volatility in asset prices,

such as the stock market (see, e.g., Shiller (2014)). The literature has emphasized a

number of financial-market shocks that could induce asset price volatility, e.g., time-

varying risk premia, time-varying beliefs, or supply-demand effects (see, e.g., Cochrane

3More broadly, our paper is part of a large theoretical New-Keynesian literature (see Woodford (2005);
Galí (2015) for reviews). A strand of this literature builds models with realistic transmission lags to
analyze the performance of different monetary policy rules (see Rudebusch and Svensson (1999); Svensson
(2003)). We share with these papers the perspective that with transmission lags the optimal policy
typically depends on the Fed’s beliefs (or judgement), but we focus on the implications for asset prices.
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(2011); Campbell (2014); Gabaix and Koijen (2021)). We complement this literature by

showing that, with transmission lags and inertia, optimal monetary policy can also cause

the appearance of “excess”volatility in asset prices. In our model, the Fed induces asset

price volatility in response to news about future aggregate demand and in response to

current output gaps. This Fed-induced volatility seems “excessive”in the sense that it is

not linked to underlying productivity, but it helps improve macroeconomic stability.4

Our results on macroeconomic news is related to a large literature that empirically

investigates the market reaction to macroeconomic news announcements (e.g., McQueen

and Roley (1993); Fleming and Remolona (1997); Boyd et al. (2005); Andersen et al.

(2007)). In recent work, Elenev et al. (2023) document and explain the cyclicality of the

stock market response to news, whereas we analyze how improvements in the precision of

news affects asset price and macroeconomic volatility.

Our results on the inflation risk premium are related to a large empirical literature

that studies the relationship between inflation and asset prices (see Cieslak and Pflueger

(2022) for a survey). In recent work, Fang et al. (2022) show that core inflation (excluding

food and energy) comoves negatively with most asset returns, which is consistent with our

analysis. Fang et al. (2022) explain this comovement result using a New Keynesian model

with cost-push (markup) shocks. In contrast, we show that, with realistic policy lags and

inertia, demand or supply shocks also induce a negative correlation between inflation and

asset prices. The effect of demand shocks is particularly noteworthy, because these shocks

simultaneously induce high output (a demand boom) along with high inflation, as in the

late stages of the Covid-19 recovery. In contrast, a cost-push shock would induce the Fed

to target low output (a demand recession) to fight high inflation.

Finally, the idea that monetary policy affects and operates through asset prices is

well supported empirically by Jensen et al. (1996), Thorbecke (1997), Jensen and Mercer

(2002), Rigobon and Sack (2004), Ehrmann and Fratzscher (2004), Bernanke and Kut-

tner (2005), Bauer and Swanson (2020), among others. Moreover, Cieslak and Vissing-

Jorgensen (2020) conduct a textual analysis of FOMC documents and find strong support

for the idea that the Fed pays attention to stock prices and cuts interest rates after stock

price declines (“the Fed put”). We build on these insights and turn them into an asset

pricing framework.

4Our model is also consistent with the “excess”volatility in long-term bonds observed by Van Bins-
bergen (2020). In our model, when there is a positive signal about future aggregate demand or when
the economy currently has a positive output gap, the Fed reduces bond prices– to reduce aggregate asest
prices and aggregate demand. When there is a positive cash-flow beliefs shock, the Fed once again reduces
bond prices– this time to insulate the aggregate asset prices from this shock (the Fed put/call).
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The rest of the paper is organized as follows. Section 2 introduces our baseline model

without transmission delays or inertia. Sections 3 and 4 establish our results for transmis-

sion lags and inertia, respectively. Section 5 endogenizes inflation. Section 6 introduces

disagreements between the market and the Fed. Section 7 provides final remarks. The

appendix contains the omitted derivations and extensions.

2. The baseline model without transmission lags

In this section, we develop a baseline version of our model without transmission lags. This

model is a variant of the textbook New Keynesian model with the main difference that

we allow for a financial market block with a non-trivial risk premium, and we characterize

the implications of the model for aggregate asset prices. It is a stepping stone to our main

analysis with lags and allows us to highlight a basic mechanism that is behind several of

our main results: aggregate asset prices are driven by macroeconomic needs– specifically,

the gap between aggregate demand and supply– rather than by traditional financial forces

such as cash-flow beliefs or risk premia. Financial forces influence relative asset prices

subject to an adding-up constraint imposed by macroeconomic needs.

2.1. Environment

The economy is set in discrete time t ∈ {0, 1, ..}. There are four types of agents: “asset-
holding households”(the households), “hand-to-mouth agents,”“portfolio managers (the

market),”and “the central bank (the Fed).”Hand-to-mouth agents do not play an impor-

tant role beyond decoupling the labor supply from the households’consumption behavior.

Households make consumption-savings decisions (possibly with frictions) that drive ag-

gregate demand. The market makes a portfolio choice decision on behalf of the households

and determines asset prices. The Fed sets monetary policy to close the output gap.

Supply side and nominal rigidities. The supply side features a competitive final

goods sector and monopolistically competitive intermediate goods firms that produce

according to

Yt =

(∫ 1

0

Yt (ν)
ε−1
ε dν

) ε
ε−1

, where Yt (ν) = AtLt (ν)
1−α .

For now, the intermediate good firms have fully sticky nominal prices (we endogenize

inflation in Section 5). Since these firms operate with a markup, they find it optimal to
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meet the demand for their good. Therefore, output is determined by aggregate demand,

which depends on the consumption of households, CH
t , and hand-to-mouth agents, C

HM
t :

Yt = CH
t + CHM

t . (1)

Labor is supplied by the hand-to-mouth agents. They have the per-period utility

function

logCHM
t − χ L

1+ϕ
t

1 + ϕ
,

which leads to a standard labor supply curve (see Appendix A.1).

With these production technologies, if the model was fully competitive, labor’s share

of output would be constant and given by (1− α)Yt. However, since the intermediate
good firms have monopoly power and make pure profits, labor’s share is smaller than

(1− α)Yt. To simplify the exposition, we assume the government taxes part of the firms’
profits (lump-sum) and redistributes to workers (lump-sum), so that labor’s share is as

in the fully competitive case (see Appendix A.1 for details). This implies the spending of

hand-to-mouth agents (who supply all labor) is

CHM
t = (1− α)Yt. (2)

Combining Eqs. (1) and (2) yields

Yt =
CH
t

α
. (3)

Hand-to-mouth agents create a Keynesian multiplier effect, but output is ultimately de-

termined by (asset-holding) households’ spending, CH
t .

Potential output and aggregate supply shocks. Consider a flexible-price bench-

mark economy without nominal rigidities (the same setup except the intermediate good

firms have fully flexible prices). In this benchmark, the equilibrium labor supply is con-

stant and solves χ (L∗)1+ϕ = ε−1
ε
(see Appendix A.1). Output is given by Y ∗t = At (L

∗)1−α.

We refer to Y ∗t as potential output. Log potential output, y
∗
t = log Y ∗t , is driven by At

and evolves according to

y∗t+1 = y∗t + zt+1, where zt+1 ∼ N
(
0, σ2z

)
. (4)

For simplicity, supply shocks are permanent and follow a log-normal distribution.
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In our model with sticky prices, output is given by (3) and can deviate from its

potential. We let yt = log Yt denote log output and ỹt = yt − y∗t denote the output gap.

Financial assets. There are two assets. There is a market portfolio, which is a claim on

firms’profits αYt (the firms’share of output). We let Pt denote the ex-dividend price of

the market portfolio (which we also refer to as “the aggregate asset price”or “aggregate

asset prices”). The gross return of the market portfolio is

Rt+1 =
αYt+1 + Pt+1

Pt
. (5)

There is also a risk-free asset in zero net supply. Its gross return Rf
t is set by the Fed, as

we describe subsequently.

Households’ consumption-savings decisions and demand shocks. Households

have standard preferences:

Et

[ ∞∑
h=0

βt+h logCH
t+h

]
, (6)

along with the budget constraint

Wt+1 + CH
t+1 = Wt

(
(1− ωt)Rf

t + ωtRt+1

)
= Dt+1 +Kt+1, (7)

where Dt+1 = Wt

[
(1− ωt)

(
Rf
t − 1

)
+ ωt

αYt+1
Pt

]
and Kt+1 = Wt

[
1− ωt + ωt

Pt+1
Pt

]
.

Wt denotes the end-of-period wealth and ωt denotes the market portfolio weight in period

t. The term Wt

(
(1− ωt)Rf

t + ωtRt+1

)
is the beginning-of-period wealth in period t+ 1.

The second line breaks this term into a component that captures the interest and dividend

income (Dt+1) and a residual component that captures the capital (Kt+1). This distinction

will facilitate our exposition.

Households make a consumption-savings decision. However, they do not necessarily

make an optimal decision. Rather, we assume households follow consumption rules. To

impose some discipline on these rules, we start with the optimal rule with the preferences

in (6), which is given by

CH
t = (1− β) (Dt +Kt) .
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According to the optimal rule, households spend a fraction of their beginning-of-period

wealth. We consider empirically-grounded deviations from this rule. In the benchmark

model, we assume that consumption instead follows:

CH
t = (1− β) (Dt +Kt exp (δt)) , where δt ∼ N

(
0, σ2δ

)
. (8)

Here, δt captures aggregate demand shocks; all else equal, a higher δt means households

spend more than predicted by the optimal rule. The exact functional form does not play

an important role beyond simplifying the expressions. The special case σ2δ = 0 corresponds

to the textbook model in which households’consumption is fully optimal.

The demand shock captures various behavioral or informational frictions that affect

households’spending in practice, e.g., a consumer sentiment shock. It can also be viewed

as a simple modeling device to capture a variety of shocks that affect aggregate demand,

e.g., a discount rate shock or a fiscal policy shock. We assume the demand shocks are

transitory, although our analysis is flexible and can accommodate more persistent shocks.

In subsequent sections, we will modify the rule in (8) to introduce transmission lags and

demand inertia.

The portfolio managers (the market) and the portfolio allocation. Households

delegate their portfolio choice to portfolio managers (the market), who invest on their

behalf. The portfolio managers are infinitesimal and they do not consume themselves.

They make a portfolio allocation to maximize expected log household wealth,

max
ωt

EM
t

[
log
(
Wt

(
Rf
t + ωt

(
Rt+1 −Rf

t

)))]
. (9)

We formulate the portfolio problem in terms of wealth, rather than consumption, because

we allow consumption to deviate from the optimal rule. In our setup, wealth is a more

accurate representation of welfare, as it captures the ideal consumption a household could

choose if she followed the optimal rule. We assume portfolio managers maximize log-

wealth in line with the households’preferences in (6). In the special case where households

follow the optimal rule (σ2δ = 0), problem (9) results in portfolio allocations that maximize

the households’utility. The superscript M captures the market’s belief.

Asset market clearing and the equilibrium return. Financial markets are in equi-

librium when the households hold the market portfolio, both before and after the portfolio
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allocation:

Wt = Pt and ωt = 1. (10)

Problem (9) implies a standard optimality condition. Substituting ωt = 1 into this

condition, we obtain

EM
t

[
Mt+1R

f
t

]
= 1 where Mt+1 =

1

Rt+1

. (11)

The model features a standard stochastic discount factor (SDF) driven by aggregate

wealth. Assuming Rt+1 is (approximately) log-normally distributed, this implies a fi-

nancial market equilibrium condition,

EM
t [rt+1] +

1

2
varMt [rt+1]− it = rpt ≡ varMt [rt+1] . (12)

We use lower-case letters to represent the log of the corresponding variable and it = logR
f
t

to denote the log risk-free interest rate. In equilibrium, the expected excess return on the

market portfolio is equal to the required risk premium, which is determined by the variance

of the aggregate return.

Campbell-Shiller approximation to the equilibrium return. We use a log-normal

approximation to the equilibrium return on the market portfolio, Rt+1 =
αYt+1+Pt+1

Pt
,

that facilitates closed-form solutions. In Appendix A.2, we show that absent shocks the

dividend price ratio is constant and given by αYt
Pt
= 1−β

β
. We then log-linearize (5) around

this ratio to obtain

rt+1 = κ+ (1− β) yt+1 + βpt+1 − pt, (13)

where κ ≡ −β log β − (1− β) log
(
1− β
α

)
.

This is the Campbell-Shiller approximation applied to our model (see Campbell (2017)).

The central bank (the Fed) and monetary policy. In each period, the Fed sets the

risk-free interest rate (without commitment) to minimize the discounted sum of quadratic

log output gaps:

min
Rft

EF
t

[ ∞∑
h=0

βhỹ2t+h

]
. (14)

12



The superscript F captures the Fed’s belief. In the baseline model, the solution to problem

(14) is simple; the Fed always sets the interest rate that closes the output gap

Yt = Y ∗t , which implies ỹt = yt − y∗t = 0. (15)

2.2. Macroeconomic needs drive the aggregate asset price

We next characterize the equilibrium and illustrate that aggregate asset prices are driven

by macroeconomic needs. We do this in a slight extension of the baseline setup in which

the market thinks the supply shocks are drawn from

zt+1 ∼ N
(
bt, σ

2
z

)
, where bt ∼ N

(
0, σ2b

)
. (16)

Here, bt is a belief shock for future cash flows. These shocks are not central for our

analysis: they enable us to capture standard financial forces, such as time-varying cash-

flow sentiment, which we contrast with macroeconomic needs. The special case σ2b = 0 is

the baseline model (see (4)).

To solve for the equilibrium, we first combine Eqs. (7) and (10) to obtain Dt =

αYt, Kt = Pt. In equilibrium, dividends are equal to the firms’share of output. Capital is

equal to the (ex-dividend) value of the market portfolio. Substituting these observations

into the consumption rule in (8), we obtain

CH
t = (1− β) (αYt + Pt exp (δt)) .

Substituting Eq. (3) (CH
t = αYt) into this expression yields an output-asset price relation

Yt = (1− β) 1
αβ

Pt exp (δt)

=⇒ yt = m+ pt + δt, where m ≡ log
(
1− β
αβ

)
. (17)

Output depends on aggregate wealth, Pt, the MPC out of wealth, 1 − β, the demand

shock, δt, and the Keynesian multiplier, 1/ (αβ). The second line describes the relation

in logs and obtains the derived parameter m.5

The output-asset price relation in (17) and its variants play a central role in our

5The output-asset price relation (17) can be interpreted more broadly as a reduced form for various
channels that link asset prices and aggregate demand. For example, in Caballero and Simsek (2020) we
show that adding investment also leaves the output-asset price relation qualitatively unchanged (due to
a Q-theory mechanism).
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analysis. Specifically, we invert this equation to find the asset price that solves the Fed’s

policy problem. In this section, the Fed sets output equal to its potential at all times (see

(15)). Therefore, the Fed targets asset prices

pt = p∗t ≡ y∗t −m− δt,

which, from the output-asset price relation, ensures that yt = y∗t . We normalize p∗t
by potential output to define “pystar”– the Fed’s target (log) aggregate asset price per

potential output:

(py)∗t ≡ p∗t − y∗t = −m− δt. (18)

The Fed targets asset prices such that households spend just enough to ensure that ag-

gregate demand is equal to aggregate supply.

How does the Fed achieve “pystar”? This depends on the financial market side of the

model. Using (13), along with yt = y∗t and pt = p∗t , we calculate

rt+1 = ρ+ (1− β) y∗t+1 + β
(
y∗t+1 − δt+1

)
− (y∗t − δt)

= ρ+ δt + zt+1 − βδt+1. (19)

Here, ρ = − log β is the discount rate. The equilibrium return is affected by supply and

demand shocks. A positive future supply shock increases the return. A positive future

demand shock δt+1 reduces the realized return (due to the policy response it triggers).

Combining (19) and (12), we solve for the equilibrium interest rate the Fed needs to set

to achieve “pystar,”and for the equilibrium risk premium

it = ρ+ bt + δt −
1

2
rpt and rpt = σ2z + β2σ2δ. (20)

Both supply and demand shocks raise the risk premium because they contribute to asset

price volatility. The interest rate is decreasing in the risk premium and increasing in the

demand shock and in the belief shock. The following result summarizes the equilibrium.

Proposition 1 (Macroeconomic needs drive the aggregate asset price). Consider the
model without transmission lags and with belief shocks for future cash flows. In equilib-

rium, the Fed targets a “pystar” given by (18). The equilibrium return on the market

portfolio is given by (19). The policy interest rate and the risk premium are given by (20).

This result shows that the aggregate asset price is driven by macroeconomic needs–

imbalances between aggregate demand and supply. In particular, Eqs. (18− 20) show
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that “pystar”depends on macroeconomic variables and shocks that drive demand (m and

δt). A positive demand shock (δt > 0) reduces the aggregate asset price. When households

are inclined to spend more than usual, the Fed hikes the interest rate and reduces aggregate

wealth and spending. By doing this, the Fed prevents the positive output gap that the

surge in spending would otherwise induce. Conversely, in response to a negative demand

shock (δt < 0), the Fed cuts the interest rate and raises aggregate wealth, which prevents

the negative output gap that the decline in spending would otherwise induce.

The result also shows that, perhaps surprisingly, the aggregate asset price does not

depend on traditional financial forces such as market’s beliefs or risk premia (unless they

correlate with macroeconomic needs). Eqs. (18− 20) show that market belief shocks (as
well as risk premia) are absorbed by the interest rate. For instance, a negative cash-flow

belief shock (bt < 0) leaves “pystar” unchanged but induces a decline in the interest

rate. Intuitively, a decline in the market’s “optimism”puts downward pressure on asset

prices. However, the Fed does not want asset prices to decline: given that aggregate supply

has not changed, a decline in asset prices would induce an ineffi cient demand recession.

Therefore, the Fed cuts the interest rate and prevents the decline in aggregate asset

prices– providing an explanation for “the Fed put.”Conversely, in response to a positive

cash-flow shock (bt > 0), the Fed hikes the interest rate and prevents an aggregate asset

price boom that would induce a demand boom.

What happens with traditional financial forces in our model? They drive relative asset

prices. For instance, suppose the portfolio managers can also trade a risky asset j in zero

net supply with one-period-ahead payoff
{
Xj
t+1

}
. Then, the equilibrium return on this

asset, Rj
t+1 =

Xj
t+1

Pt
, satisfies the standard asset pricing condition, EM

t

[
Mt+1R

j
t+1

]
= 1 [cf.

(11)]. In Appendix B.1, we further show that financial forces affect the price of assets

in positive supply such as aggregate stocks and bonds. We extend the model so that

there are two claims on production firms: the equity claim (“aggregate stocks”) and the

risk-free debt claim (“aggregate bonds”). The market portfolio is the sum of aggregate

stocks and aggregate bonds, Pt = P b
t + P s

t . In this model, the macroeconomic needs still

drive Pt but traditional financial forces influence P b
t and P

s
t . For instance, a negative

cash-flow belief shock (bt < 0) leaves Pt unchanged (as in Proposition 1), but it also

decreases P s
t and increases P

b
t– since stocks are more exposed to future earnings than

bonds. Intuitively, macroeconomic needs impose an adding-up constraint on prices of

assets in positive supply, but the relative asset prices are determined by financial forces.

Importantly, up to now we have assumed that monetary policy affects asset prices

instantaneously and that asset prices affect aggregate demand instantaneously. These
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assumptions imply that monetary policy is very powerful: it can set output to its potential

at all times. Consequently, the outcomes resemble a real business cycles (RBC) model:

in equilibrium, there are no demand booms or recessions and the Fed’s beliefs (or the

judgement) does not affect macroeconomic outcomes or asset prices. In practice, monetary

policy has much less control over aggregate demand, and this has substantial implications

for both aggregate activity and asset prices. We next turn to these issues.

3. Asset pricing with policy transmission lags

A major reason behind the Fed’s imperfect aggregate demand control is transmission

lags– a large empirical literature documents that the full effect of monetary policy on

output builds over several quarters (see Remark 2). In view of these lags, monetary

policy needs to anticipate future macroeconomic needs. Since macroeconomic needs are

uncertain and diffi cult to predict, some demand-driven business cycles are inevitable.

Moreover, the Fed’s beliefs play a central role for macroeconomic outcomes: the better the

Fed is able to anticipate future macroeconomic needs, the more it can mitigate demand-

driven business cycles. We next present our main results that show transmission lags and

related frictions matter greatly not only for macroeconomic outcomes but also for asset

prices. We show that transmission lags imply that the Fed’s beliefs drive aggregate asset

prices. Moreover, improvements in the Fed’s ability to predict future macroeconomic

needs increases asset price volatility.

To capture lags, suppose households follow a modified version of the rule in (8):

CH
t = (1− β) (Dt +Kt−1 exp (δt)) , (21)

where δt ∼ N (0, σ2δ) as before. That is, households respond to the lagged value of the

capital portion of their wealth. To simplify the equations, we assume households respond

to dividend and interest income immediately.

Following the same steps as before, we obtain the output-asset price relation

Yt =
1− β
αβ

Pt−1 exp (δt) =⇒ yt = m+ pt−1 + δt. (22)

Asset prices affect output as before, but the effects operate with a lag.

An immediate implication of Eq. (22) is that output gaps can no longer be zero at

all times and states. To see this, consider the equilibrium in period t. Since pt−1 is
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predetermined, output fluctuates with demand shocks δt. However, potential output still

evolves according to (4) and fluctuates according to supply shocks zt. Since δt and zt are

uncorrelated (by assumption), the output gap is non-zero except for a measure zero set

of events. Because output responds to asset prices with a lag, both supply and demand

shocks lead to output gaps, which the Fed cannot offset.

In this case, the Fed minimizes the same quadratic objective function (14) as before,

but subject to the constraint (22). In every period, the Fed sets policy without commitment

(it takes its future policy decisions as given). It is then easy to show that the optimal

policy implies

EF
t [yt+1] = EF

t

[
y∗t+1

]
(23)

The Fed sets expected demand equal to expected supply, under its belief.

To solve for “pystar”in this case, we combine (23) and (22), along with y∗t+1 = y∗t+zt+1,

to obtain

m+ p∗t + EF
t [δt+1] = y∗t + EF

t [zt+1] .

Expected demand depends on the Fed’s target asset price and the Fed’s expectation for

the demand shock. Expected supply depends on the Fed’s expectation for the supply

shock. We can then solve for the Fed’s target aggregate asset price

pt = p∗t ≡ y∗t − EF
t

[
δ̃t+1

]
−m,

where δ̃t+1 ≡ δt+1− zt+1 is the net demand shock. As before, we normalize this price with
the current potential output, which yields “pystar”:

(py)∗t = p∗t − y∗t = −EF
t

[
δ̃t+1

]
−m. (24)

Now “pystar”depends on the Fed’s expectation about future macroeconomic needs. The

Fed sets a higher “pystar”when it expects lower future demand or higher future supply.

Conversely, the Fed sets a lower “pystar”when it expects higher future demand or lower

future supply.

Substituting Eq. (24) into (22) (with pt = p∗t ) we solve for future output:

yt+1 = y∗t + δt+1 − EF
t

[
δ̃t+1

]
(25)

ỹt+1 = δ̃t+1 − EF
t

[
δ̃t+1

]
. (26)

The first equation says that output is driven by demand shocks relative to the Fed’s
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forecast of net demand, while supply shocks do not affect output contemporaneously.

The second equation says that the output gap is driven by the unforecastable component

of net demand shocks. If demand is realized to be higher than (or supply is realized to

be lower than) what the Fed forecasted, then the output gap is positive. The following

proposition summarizes this discussion.

Proposition 2 (Transmission lags and the Fed’s beliefs). Consider the model with trans-
mission lags. In equilibrium, “pystar” is given by (24) and is decreasing in the Fed’s

beliefs about future net aggregate demand. Output and its gap are given by (25− 26).
The output gap is driven by net demand shocks relative to the Fed’s forecast.

To characterize the equilibrium further, we need to specify the Fed’s beliefs about

future demand and supply. We do this in a slight variant of the baseline model in which the

agents receive macroeconomic news about future shocks. In addition to closing the model,

this setup connects our analysis with a growing empirical literature that investigates the

asset price effects of macroeconomic news announcements (e.g., Elenev et al. (2023)). We

complement this literature by analyzing how macroeconomic news affects the volatility of

asset prices.

3.1. Macroeconomic news and asset price volatility

Suppose the agents receive news about the next period’s demand shock:

nδt = δt+1 + eδt, where eδt ∼ N
(
0, σ̃2δ

)
.

In practice, macroeconomic news announcements such as nonfarm payrolls can provide

information about both future aggregate demand and supply. We focus on demand news

because in Appendix B.2 we show that, while supply news does affect asset prices (in the

expected direction), it does not affect the total asset price volatility in our model (see

Remark 1 for intuition). For now, the Fed and the market agree on the interpretation of

the demand news. We consider the implications of disagreements between the Fed and

the market in Section 6. Throughout the paper, when agents have common beliefs, we

drop the superscript on the expectations and the variance operators.

Recall that demand shocks are drawn from the i.i.d. distribution, N (0, σ2δ). Therefore,
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after observing nδt, the Fed and the market have common posterior beliefs given by

δt+1 ∼ N
(
γδnδt, σ

2
δ

)
where (27)

γδ =
1/σ̃2δ

1/σ̃2δ + 1/σ
2
δ

and σ2δ =
1

1/σ̃2δ + 1/σ
2
δ

.

The posterior mean is a dampened version of the news signal, and the posterior variance

is smaller than the prior variance.

With this setup, agents’ common belief for the expected net demand in the next

period is Et
[
δ̃t+1

]
= Et [δt+1] = γδnδt (since Et [zt+1] = 0). The following corollary to

Proposition 2 characterizes the equilibrium with these beliefs. It also shows that news

about aggregate demand has opposite effects on output and asset price volatilities.

Corollary 1 (Macroeconomic news and volatility). Consider the setup in Proposition 2
with news about future demand. The equilibrium is given by:

pt = p∗t ≡ y∗t − γδnδt −m (28)

yt+1 = y∗t + δt+1 − γδnδt (29)

ỹt+1 = δt+1 − γδnδt − zt+1 (30)

rt+1 = ρ+ γδnδt + (1− β) (δt+1 − γδnδt) + β (zt+1 − γδnδ,t+1) (31)

it = Et [rt+1]−
1

2
rpt, with Et [rt+1] = ρ+ γδnδt (32)

rpt = vart (rt+1) = (1− β)2 σ2δ + β2
(
σ2z + σ2δ − σ2δ

)
. (33)

The conditional volatility of output and the aggregate asset price are

vart (yt+1) = σ2δ and vart (pt+1) = σ2z +
(
σ2δ − σ2δ

)
. (34)

More precise demand news (lower σ̃2δ and σ
2
δ) reduces the volatility of output but increases

the volatility of the aggregate asset price. When β > 1 − β (which holds for reason-

able calibrations), more precise demand news increases both return volatility and the risk

premium.

Eq. (34) holds since output volatility depends on the unforecastable demand vari-

ance, vart (δt+1 − γδnδt) = σ2δ, whereas aggregate asset price volatility depends on the

forecastable demand variance, vart (γδnδ,t+1) = σ2δ − σ2δ, and on the supply variance σ2z.
When the Fed can forecast future demand more accurately, it becomes more “activist”

and preemptively responds to demand shocks by adjusting the aggregate asset price. This
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mitigates demand-driven output volatility, but it also increases the volatility of the ag-

gregate asset price. This result suggests that improvements in the precision of news over

time, perhaps due to better measurement (e.g., micro data) or better estimation tech-

niques (e.g., machine learning), might induce a “Great Moderation”in the real economy

at the expense of greater Fed-induced volatility in financial markets.

Corollary 1 characterizes the rest of the equilibrium and yields additional results. Eqs.

(28− 30) follow from substituting Et
[
δ̃t+1

]
= γδnδt into (24− 22). Eq. (31) follows by

substituting the equilibrium output and asset price into (13). In equilibrium, the return

is increasing in the future demand shock relative to expectations, δt+1 − γδnδt, because
this raises future output, yt+1. The return is also increasing in the future supply shock

zt+1 (resp. decreasing in the future demand signal, nδ,t+1), because this increases (reps.

decreases) future asset prices, pt+1.

Next consider Eqs. (32) and (33) that describe the interest rate and the risk premium.

These expressions follow from combining (31) with (12). In equilibrium, the interest rate

is increasing in the demand news; after a positive demand news, nδt > 0, the Fed reduces

the aggregate asset price by increasing the interest rate. The risk premium (the return

volatility) reflects a weighted average of future output (cash flow) volatility and future

asset price volatility. Since more precise demand news reduces output volatility but raises

asset price volatility, it exerts counteracting effects on the risk premium. When β > 1−β
(which holds for reasonable calibrations), more precise demand news also increases the

risk premium. That is, since conditional asset returns depend on future asset prices

relatively more than on future cash flows, a higher asset price volatility translates into

a higher risk premium, despite greater macroeconomic stability and lower output (cash

flow) volatility.

Remark 1 (Volatility effects of supply news). In Appendix B.2, we extend the model
to allow for news about future supply in addition to future demand. In the extended

model, the demand news has the same effects on the volatility of output and asset prices

as in Corollary 1 (see Corollary 8). More surprisingly, the supply news does not affect

the conditional volatility of either the output or the aggregate asset price. While supply

news frontloads some of the future output response to future supply shocks, it does not

generate output surprises because in our model agents react to supply news (or shocks)

only via asset prices, and agents react to asset prices with a lag. Supply news does

generate asset price surprises: the aggregate asset price in the extended model is given

by pt = y∗t − γδnδt + γznzt −m, where higher nzt denotes news about future supply zt+1
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(see (B.13)).6 However, these asset price reactions to supply news do not increase total

asset price volatility; they instead frontload part of the asset price volatility that would be

generated by future supply shocks.

4. Asset pricing with internal demand inertia

So far, we have focused on the lagged response of aggregate demand to financial conditions.

At the microeconomic level, these lags emerge largely from internal demand inertia, the

idea that agents tend to repeat their past spending behavior and thus respond to exoge-

nous disturbances (such as monetary policy or asset prices) gradually. Internal demand

inertia is a realistic feature that may arise from microeconomic frictions such as adjust-

ment costs or habit formation (see Caballero and Simsek (2021b, 2022b) and Woodford

(2005), Chapter 5 for further discussion). Quantitative New-Keynesian models typically

assume this type of inertia, because it helps match the observed delayed response of ag-

gregate demand to a variety of shocks. We next adjust the consumption rule to capture

internal demand inertia and derive the implications for asset prices.

Formally, suppose households follow a modified version of the rule in (21),

CH
t = (1− β)Dt +

[
ηβCH

t−1 + (1− η) (1− β)Kt−1
]
exp (δt) , (35)

where δt ∼ N (0, σ2δ) as before and η ∈ [0, 1). For simplicity, we keep the response to
dividend income unchanged. We change the remaining part so that households respond

to a weighted-average of their past spending and lagged aggregate wealth. The parameter

η captures the extent of inertia. The case η = 0 yields the consumption rule (21) with

pure transmission lags analyzed in the last section. We multiply the coeffi cient on lagged

spending by β, which ensures that the equation holds in a steady state.7

Following the same steps as before, we obtain the output-asset price relation

Yt =

(
ηYt−1 + (1− η)

1− β
αβ

Pt−1

)
exp (δt) .

In Appendix A.4, we approximate this relation (around the steady state for Yt/Pt) to

6This equation also shows that a macroeconomic news announcement that suggests stronger-than-
expected economic activity (e.g,. a positive nonfarm payrolls surprise) can either decrease or increase the
aggregate asset price depending on its information content about demand vs supply.

7In Caballero and Simsek (2021b), we derive a version of the rule in (35) by assuming that in every
period only a fraction of agents adjust their spending. Here, we simply assume the equation as an
aggregate “rule”and derive its implications for asset prices.
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obtain

yt = (1− η)m+ ηyt−1 + (1− η) pt−1 + δt. (36)

When η = 0, the relation is the same as (22): there are policy lags, but no internal demand

inertia. When η > 0, there is also internal demand inertia. Note that internal demand

inertia creates endogenous persistence: aggregate demand persists over time, even though

aggregate demand shocks are transitory.

As before, the Fed sets it to minimize the objective function in (14) subject to the

output dynamics in (36). It is easy to check that the Fed’s optimality condition is still

characterized by (23): EF
t [yt+1] = EF

t

[
y∗t+1

]
.

To solve for “pystar” in this case, we combine Eqs. (23) and(36), and use y∗t+1 =

y∗t + zt+1, to obtain

(1− η)m+ ηyt + (1− η) p∗t + EF
t [δt+1] = y∗t + EF

t [zt+1] .

As before, we invert this equation to solve for “pystar”

(py)∗t = p∗t − y∗t = −
η

1− η ỹt −
EF
t

[
δ̃t+1

]
1− η −m, where δ̃t+1 ≡ δt+1 − zt+1. (37)

Compared to Eq. (24), the equilibrium features asset price overshooting– when the

output gap is negative (in a demand recession), “pystar” is higher than usual (and vice

versa for a positive output gap). With inertia, in a demand recession the Fed realizes

that the current weakness in economic activity will persist into the future. Therefore, the

Fed overshoots asset prices upward to neutralize the future effects of current weakness.

Conversely, in a demand boom, the Fed overshoots asset prices downward to neutralize

the future effects of strong spending in the current period. The overshooting mechanism

creates a seeming disconnect between the performance of the economy and the financial

markets, but this disconnect is useful in closing the output gap.

Eq. (37) also implies that inertia amplifies the Fed’s response to the current output

gap and to its net demand forecast. Since inertia reduces the MPC out of wealth in a

given period (controlling for the cumulative impact), the Fed “turns up” the signal to

compensate for inertia and induce a faster recovery.

Substituting (37) back into (36) (with pt = p∗t ) we solve for output and its gap

yt+1 = y∗t + δt+1 − EF
t

[
δ̃t+1

]
(38)

ỹt+1 = δ̃t+1 − EF
t

[
δ̃t+1

]
. (39)
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These expressions are the same as before [see (25)]. Since the Fed overshoots asset prices

to neutralize the effects of the current output gap, future output and its gap are driven by

unforecastable shocks, as before. The following proposition summarizes this discussion.

Proposition 3 (Internal inertia and asset price overshooting). Consider the model with
internal demand inertia and transmission lags (η > 0). In equilibrium, “pystar,”output,

and the output gap are given by Eqs. (37− 39). The equilibrium features a Fed-induced

asset price overshooting: in response to a negative current output gap, the Fed targets a

higher-than-average “pystar”(and vice versa for a positive output gap).

We next adopt the belief structure in Section 3.1 where agents’(common) beliefs satisfy

Et [δt+1] = γδnδt and Et [zt+1] = 0. The following result completes the characterization

and describes the covariance of output and asset prices. This covariance plays a key role

in our analysis of inflation in the next section.

Corollary 2 (Covariance between the output gap and asset prices). Consider the setup
in Proposition 4 with the belief structure in Section 3.1. The equilibrium is given by

pt = p∗t = y∗t−1 + zt −
η

1− η (δt − γδnδ,t−1 − zt)−
γδnδt
1− η −m (40)

yt+1 = y∗t + δt+1 − γδnδt (41)

ỹt+1 = δt+1 − γδnδt − zt+1 (42)

rt+1 = ρ+
γδnδt
1− η +

η

1− η (δt − γδnδ,t−1 − zt)

+

(
(1− β)− β η

1− η

)
(δt+1 − γδnδt) +

β

1− η (zt+1 − γδnδ,t+1) (43)

it = Et [rt+1]−
1

2
rpt, with Et [rt+1] = ρ+

γδnδt
1− η +

η (δt − γδnδ,t−1 − zt)
1− η (44)

rpt = vart (rt+1) =

(
1− η − β
1− η

)2
σ2δ +

(
β

1− η

)2 (
σ2z + σ2δ − σ2δ

)
. (45)

The output gap and the price of the market portfolio are negatively correlated:

covt (ỹt+1, pt+1) = −
η

1− ησ
2
δ −

1

1− ησ
2
z, (46)

where σ2δ = vart (δt+1 − γδnδt) is the unforecastable demand variance [see (27)].

Eqs. (40− 45) generalize Eqs. (28− 33) to the setting with inertia. Eq. (46) uses
the equilibrium characterization to show that demand and supply shocks both induce a

negative conditional covariance between the output gap and asset prices.
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To understand (46), first consider a negative supply shock, zt+1 < 0. This shock

increases the output gap ỹt+1, by reducing potential output y∗t+1. At the same time, since

the decline in the potential output is persistent, the shock induces the Fed to target lower

asset prices. Note that this mechanism is driven by transmission lags but it does not

rely on internal demand inertia. Supply shocks induce a negative covariance between the

output gap and asset prices for any η ≥ 0.
Next consider a positive demand shock, δt+1 > 0. This shock also drives up the

output gap ỹt+1, by raising actual output yt+1. In view of demand inertia, the Fed then

overshoots asset prices downward. This mechanism does rely on inertia (η > 0). The effect

is also more surprising than the effect of supply shocks, because an increase in output is

associated with a decrease in asset prices. This is another manifestation of the disconnect

between the performance of the economy and financial markets.

Remark 2 (Transmission lags and demand inertia in practice). We capture transmission
lags by assuming that spending responds to asset prices with a delay of one period. How

should we think of the length of a period? We envision the period length as the planning

horizon of the Fed: a period is suffi ciently long that the Fed can expect its current deci-

sions to have a meaningful impact on the real economic activity in the next period. In

practice, while the impact of monetary policy on output begins to be felt within months,

its peak cumulative effect can take up to two years (see, e.g., Romer and Romer (2004)

and Chodorow-Reich et al. (2021)). Based on this evidence, we can think of calibrating

the period length as somewhere between a quarter and two years. For every choice of the

period length, we can then calibrate the internal demand inertia η by combining the em-

pirical evidence on transmission lags with Eq. (36): this equation implies that the impact

of asset prices in the next period is given by, (1− η) pt, whereas the cumulative impact
is given by (1− η) (1 + η + η2 + ...) pt = pt. The calibrations with different period lengths

(and different corresponding η) differ mainly in terms of how quickly the Fed is willing or

able to close current output gaps.8

8In Caballero and Simsek (2021b), we use a model that features aggregate demand inertia but no
explicit transmission lags, because the model is set in continuous time. In that environment, if there is
no cost to overshooting asset prices, the Fed closes a negative output gap immediately by increasing (and
subsequently decreasing) asset prices by an infinite amount to compensate for inertia. However, once
we add costs to asset price overshooting, we recover the analogue of Proposition 3. Hence, transmission
lags can also be viewed as capturing unmodeled costs to asset price overshooting in an environment with
inertia. While the Fed might be able to shorten transmission lags by increasing asset price overshooting,
there are natural limits to this alternative policy.
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5. Inflation and asset prices

We next extend our model to allow for partially flexible prices and inflation. We adopt

the textbook setup in which inflation is determined by a New-Keynesian Phillips Curve

(NKPC). We show that in equilibrium inflation depends only on the current output gap.

Therefore, Corollary 2 from the last section implies that inflation and asset prices are also

negatively correlated. To simplify the exposition, we relegate the details of this section

to Appendix A.5 and describe the changes introduced by inflation.

We adopt the standard Calvo setup: at each instant a randomly selected fraction of

intermediate firms reset their nominal price, with a constant hazard. This price remains

unchanged until the firm gets to adjust again. In the appendix, we show that this leads

to the standard NKPC:

πt = κỹt + βES
t [πt+1] . (47)

Here, πt denotes the log-linearized nominal inflation realized in period t. The parameter,

κ, is a composite price flexibility parameter (see (A.26)). The superscript S denotes the

price-setters’(firms’) beliefs.

We keep the macroeconomic side of the model the same as in Section 4. In particular,

the output-asset price relation (36) still holds.

We change the financial market side of the model slightly to allow for a nominal interest

rate (which is what the Fed sets) in addition to the real interest rate. Specifically, there

is a nominal risk-free asset with nominal interest rate denoted by Rfn
t , in addition to the

real risk-free asset with real interest rate Rf
t , and the market portfolio with real return

Rt+1. Both risk-free assets are in zero net supply. Assuming the return and inflation

are (approximately) jointly log-normally distributed, we have the following two financial

market equilibrium conditions (see the appendix):

EM
t [rt+1] +

1

2
varMt [rt+1]− it = rpt ≡ varMt [rt+1] (48)[

int − EM
t [πt+1] +

1

2
var (πt+1)

]
− it = irpt ≡ −cov (πt+1, rt+1) , (49)

where it = logRf
t denotes the real risk-free interest rate (as before) and i

n
t = logRfn

t

denotes the nominal risk-free interest rate.

Eq. (48) is the same as the earlier financial market equilibrium condition (12). Eq. (49)

is new and describes the difference between the expected real return on the nominal risk-

free rate and the real risk-free rate (the variance term 1
2
var (πt+1) is a Jensen’s inequality

adjustment). This difference corresponds to the inflation risk premium: the additional
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return investors require from holding the nominal bond due to the fact that its real return

declines with inflation. Eq. (49) says that the inflation risk premium depends negatively

on the covariance between inflation and the (real) return on the market portfolio. If

cov (πt+1, rt+1) < 0, i.e. inflation is high when the market portfolio generates a low

return, the inflation risk premium is positive. If instead cov (πt+1, rt+1) > 0, the inflation

risk premium is negative.9

We also adjust the Fed’s problem to incorporate the costs of inflation gaps [cf. (14)]

min
int

EF
t

[ ∞∑
h=0

βh
(
ỹ2t+h + ψπ2t+h

)]
.

Here, ψ denotes the relative welfare weight for the inflation gaps. We normalize the

inflation target to zero so the inflation gap is equal to inflation. Note also that the Fed

sets the nominal interest rate int (which is no longer the same as the real rate it).

Finally, we assume all agents (the Fed , the market, and the price setters) have common

beliefs.10 The following results generalize Proposition 3 and Corollary 2 to this setup.

Proposition 4 (Asset pricing with inflation). Consider the setup in Proposition 3 but
with nominal prices that are partially flexible. Suppose agents have common beliefs. There

is an equilibrium in which the Fed achieves a zero expected inflation and a zero expected

output gap

Et [πt+1] = 0 and Et [ỹt+1] = 0. (50)

In equilibrium, the real variables are the same as in Proposition 3: Eqs. (37− 39) still
apply. Inflation is given by

πt = κỹt. (51)

In equilibrium, the Fed still targets a zero expected output gap. By doing this, the

Fed also achieves zero expected inflation. That is, in this setup, the “divine coincidence”

applies in expectation– the Fed does not face a trade-off between stabilizing the output

gap and inflation.

Since the Fed still targets a zero output gap on average, Et [ỹt+1] = 0, the real side

of the model is the same as before. Hence, the equilibrium with inflation has a block-

recursive structure. We solve for the real variables using Proposition 3 (ignoring inflation).

9Eq. (49) is a generalized Fisher equation that accounts for the inflation risk premium. In the
textbook New-Keynesian model, the variance and covariance terms vanish (due to log-linearization) and
this becomes the standard Fisher equation, int − EMt [πt+1] = it.
10In Caballero and Simsek (2022a), we show that disagreements between the Fed and the price setters

affect the price setters’expected inflation and induce a policy trade-off similar to “cost-push” shocks.
Here, we abstract from these effects and focus on the asset pricing effects of inflation.
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We then solve for inflation using Eq. (51). Inflation depends only on the current output

gap, because the Fed stabilizes future inflation on average, Et [πt+1] = 0 (and the price

setters know this fact and have the same beliefs as the Fed).

Corollary 3 (Covariance between inflation and asset prices). Consider the setup in Propo-
sition 4 with the belief structure in Section 3.1. In equilibrium, the real variables are the

same as in Corollary 2: Eqs. (40− 45) still apply. Inflation is given by

πt+1 = κỹt+1 = κ (δt+1 − γδnδt − zt+1) . (52)

Inflation and the price of the market portfolio are negatively correlated (see (46)):

covt (πt+1, pt+1) = κcovt (ỹt+1, pt+1) = −κ
(

η

1− ησ
2
δ +

1

1− ησ
2
z

)
.

Since inflation depends on the current output gap, Corollary 2 implies that the ag-

gregate asset price is negatively correlated, not only with the output gap, but also with

inflation. As we described earlier, an unexpected positive demand shock increases the

output gap and inflation. With inertia, a positive output gap induces the Fed to over-

shoot asset prices in the downward direction. Consequently, inflation and asset prices are

negatively correlated. Recall also that a negative supply shock increases the output gap,

while reducing asset prices (regardless of the degree of inertia). Therefore, regardless of

whether it is driven by demand shocks or supply shocks, inflation is bad news for asset

prices. This observation implies that in our setup the inflation risk premium is likely to

be positive. The following result describes the conditions under which this is the case.

Corollary 4 (Inflation risk premium). Consider the setup in Corollary 3. The inflation
risk premium and the nominal interest rate are given by

irpt = −covt (πt+1, rt+1) = κ
β

1− ησ
2
z + κ

(
β

η

1− η − (1− β)
)
σ2δ (53)

int = it + irpt −
1

2
var (πt+1) (54)

where the real interest rate it is given by (44) and vart (πt+1) = κ2 (σ2δ + σ2z). The inflation

risk premium is strictly positive iff

σ2z
σ2δ
+ η

1− η >
1− β
β

. (55)
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The result follows from combining our earlier characterization of equilibrium with the

financial market equilibrium condition (49). In equilibrium, the inflation risk premium

depends on the covariance of inflation with the aggregate asset price. The nominal interest

rate depends on the inflation risk premium and the real interest rate, which is the same

as before (along with a Jensen adjustment term).

Eq. (55) describes the conditions under which the inflation risk premium is positive.

With typical calibrations, the term on the right side of this condition is likely to be small.

Thus, this condition fails only if the supply shocks are rare (relative to demand shocks)

and internal demand inertia is small. Put differently, either a sizeable frequency of supply

shocks or a sizeable internal demand inertia is suffi cient for the inflation risk premium to

be positive.11

6. Asset pricing with Fed-market disagreements

The previous sections showed the importance of the Fed’s beliefs for monetary policy

and asset prices. In practice, market participants have their own opinionated beliefs and

routinely disagree with the Fed on macroeconomic conditions and appropriate policy (see

Caballero and Simsek (2022a)). We next derive the asset pricing implications of belief

disagreements between the market and the Fed. In this context, the Fed still implements

the “pystar”that is appropriate under its own belief. However, with disagreements, the

market anticipates policy “mistakes” that have important implications for the risk pre-

mium and the interest rate. First, the anticipation of future disagreements and “mistakes”

increases the risk premium– we refer to this as a policy risk premium. Second, current

disagreements induce a “behind-the-curve”phenomenon in which the market expects the

Fed to reverse course. Third, both current and anticipated future disagreements affect

the policy interest rate the Fed needs to set to achieve “pystar.”

Throughout this section, we use the model from Section 4 that features inertia (η > 0)

11To see the intuition for Eq. (55), recall that the equilibrium return satisfies

rt+1 = κ+ (1− β) yt+1 + βpt+1 − pt.

Inflation is negatively correlated with the aggregate asset price, covt (πt+1, pt+1) < 0 [see Corollary
3]. Hence, inflation can be positively correlated with the return only if it is driven by a shock that has
counteracting effects on yt+1 and pt+1, and its effect on yt+1 is stronger than its effect on pt+1. A positive
supply shock (zt+1 > 0) does not affect yt+1 and raises pt+1, so it always induces a negative correlation
between inflation and the return. A positive demand shock (δt+1 − γst) raises yt+1 and decreases pt+1,
so it can induce a positive correlation between inflation and the return. The effect on yt+1 dominates the
effect on pt+1 only if inertia is suffi ciently low so that the Fed does not overshoot asset prices by much.
Thus, the inflation risk premium can be negative only if demand surprises are very frequent relative to
supply shocks, and inertia is low. Aside from these cases, the inflation risk premium is positive.
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and fully sticky prices (κ = 0). The latter assumption simplifies the exposition and

abstracts from the effects of disagreements on inflation (see Footnote 10).

We introduce belief disagreements by modifying the signal environment from Section

3.1. As before, agents receive a public signal about aggregate demand. Unlike before, the

Fed and the market disagree about the interpretation of this signal. After observing the

public signal, each agent j ∈ {F,M} forms an idiosyncratic interpretation, µjt . Given this
interpretation, the agent believes the public signal is drawn from

nδt =
j δt+1 − µjt + eδt, where eδt ∼ N

(
0, σ̃2δ

)
.

The noise term eδt is i.i.d. across periods and independent from other random variables.

The notation =j captures that the equality holds under agent j’s belief. Given their

interpretations, agents form posterior mean-beliefs:

EF
t [δt+1] = γδ

(
nδt + µFt

)
and EM

t [δt+1] = γδ
(
nδt + µMt

)
, (56)

where γδ is the same as before (see (27)). Each agent thinks its interpretation is correct.

Hence, when agents interpret the signal differently, they develop belief disagreements

about the future aggregate demand shock. For now, we assume agents observe the others’

interpretations (and beliefs).

We also assume that agents’interpretations follow a joint Normal distribution that is

i.i.d. across periods (and both agents know this distribution):

µFt , µ
M
t ∼ N

(
0, σ2µ

)
and corr

(
µFt , µ

M
t

)
= 1− D

2
with D ∈ [0, 2] . (57)

The parameter D captures the scope of disagreement. When D = 0, interpretations are

the same and there are no disagreements. Eq. (57) also implies:

Ej
t

[
µFt+1 − µMt+1

]
= 0 and varjt

[
µFt+1 − µMt+1

]
= Dσ2µ. (58)

Agents think interpretation differences have mean zero and variance increasing with D.

A key implication of this setup is that each agent thinks the other agent’s posterior

belief is a “noisy”version of her own belief. To see this, consider the Fed’s posterior belief

γδ
(
nδ,t+1 + µFt+1

)
= γδ

(
nδ,t+1 + µMt+1

)
+ γδ

(
µFt+1 − µMt+1

)
. (59)

The market thinks its own belief, γδ
(
nδ,t+1 + µMt+1

)
, is correct. Therefore, the market
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thinks the Fed’s belief is a noisier version of its own belief. Specifically, the market’s

perceived variance of the Fed’s future belief is the sum of the forecastable demand variance

(σ2δ − σ2δ) and a noise term that increases with the scope of disagreement,

varMt
(
γδ
(
nδ,t+1 + µFt+1

))
=
(
σ2δ − σ2δ

)
+ γ2δDσ

2
µ. (60)

The rest of the model is the same as in Section 4. The following proposition charac-

terizes the equilibrium and generalizes Corollary 2 to the case with disagreements.

Proposition 5 (Fed-market disagreements). Consider the setup in Proposition 3 and
Fed-market disagreements. The equilibrium is given by

(pyt)
∗ = p∗t − y∗t = −

η

1− η ỹt −
γδ
(
nδt + µFt

)
1− η −m (61)

yt = y∗t−1 + δt − γδ
(
nδ,t−1 + µFt−1

)
(62)

ỹt = δt − γδ
(
nδ,t−1 + µFt−1

)
− zt (63)

rt+1 = ρ+
ηỹt + γδ

(
nδt + µFt

)
1− η

+
1− η − β
1− η

(
δt+1 − γδ

(
nδt + µFt

))
+

β

1− η
(
zt+1 − γδ

(
nδ,t+1 + µFt+1

))
(64)

it = EM
t [rt+1]−

rpt
2

(65)

where EM
t [rt+1] = ρ+

ηỹt
1− η + (β + η)

γδ
(
nδt + µFt

)
1− η + (1− β − η)

γδ
(
nδt + µMt

)
1− η

rpt = vart (rt+1) = rpcomt + β2γ2δDσ
2
µ, (66)

where rpcomt is the risk premium with common beliefs characterized in (45).

Eqs. (61− 63) show that the Fed-market disagreements do not affect the equilibrium
“pystar,” output, or the output gap, which are still determined by the Fed’s belief. In

fact, these equations follow from (37− 39) in Section 4 after substituting the Fed’s belief,
EF
t [δt+1] = γδ

(
nδt + µFt

)
. The Fed still shields the economy from forecasted demand

shocks under its belief.

In contrast, Eqs. (65− 66) show that disagreements do affect the interest rate and the
risk premium. Disagreements matter because the market has a different belief than the

Fed and thinks the Fed should be targeting a different “pystar.”Therefore, the market

thinks the Fed is making a policy “mistake.”These perceived “mistakes”affect the interest

rate and the risk premium. In the rest of this section, we present three corollaries that

unpack these effects.
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Corollary 5 (Policy risk premium). The risk premium, rpt = varMt [rt+1] = rpcomt +

β2γ2δDσ
2
µ, is increasing in the scope of disagreement between the Fed and the market (D).

The result follows from Eq. (66). We sketch the proof of this equation, which helps

develop the intuition. Note that the aggregate asset price in the next period is

pt+1 = p∗t+1 = y∗t+1 −
η

1− η ỹt+1 −
γδ
(
nδ,t+1 + µFt+1

)
1− η −m. (67)

Combining this expression with (62− 63), we obtain

varMt (pt+1) = varcomt (pt+1) + γ2δDσ
2
µ,

where varcomt (pt+1) is the asset price volatility that would obtain if the beliefs were com-

mon. Hence, disagreements increase the market’s perceived future asset price volatility

varMt (pt+1). Thus, disagreements also increase the market’s perceived return volatility

varMt (rt+1) (see the appendix for details).

With greater D the market thinks the Fed’s future beliefs will be “noisier”and the Fed

will make more frequent policy “mistakes.”Therefore, the market also perceives greater

future price and return volatility and demands a higher risk premium. We refer to the

component of risk premium that stems from disagreements, β2γ2δDσ
2
µ, as the policy risk

premium. In practice, we expect this premium to be especially large at times of macro-

economic uncertainty, which are likely to create a greater scope for disagreements.

Corollary 5 shows that the anticipation of future disagreements, µFt+1 − µMt+1, induces
a risk premium. Our next result shows that current disagreements, µFt − µMt , induce a
phenomenon that we call behind-the-curve.

Corollary 6 (“Behind-the-curve”). Suppose the market is more demand-optimistic than
the Fed, µMt > µFt (symmetric-opposite results hold when the market is more demand-

pessimistic). The market thinks the Fed is “behind-the-curve”and will induce a positive

output gap

EM
t [ỹt+1] = γδ

(
µMt − µFt

)
> 0, (68)

after which it will have to reverse course and implement a lower-than-average “pystar”

EM
t [pt+1] = y∗t −m−

η

1− ηγδ
(
µMt − µFt

)
< y∗t −m. (69)

In terms of the interest rates, the demand-optimistic market thinks the Fed will switch

from setting “too low” rates (lower than what is ideal under the market’s belief) to “too
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high”rates (higher than what the Fed expects and higher than the long-run average rate):

it = iMt −
β + η

1− η γδ
(
µMt − µFt

)
< iMt (70)

EM
t [it+1] = EF

t [it+1] +
η

1− ηγδ
(
µMt − µFt

)
with EF

t [it+1] = ρ− rpt+1
2
, (71)

where iMt is the equilibrium interest rate that would obtain in period t if the Fed had the

same beliefs as the market in this period, µFt = µMt (see (65)).

For a sketch proof, first consider the market’s expectation for the future output gap,

ỹt+1 = yt+1 − y∗t+1. Using Eq. (63), along with EM
t [zt+1] = 0, we calculate

EM
t [ỹt+1] = EM

t

[
δt+1 − γδ

(
nδt + µFt

)]
= EM

t

[
δt+1 − γδ

(
nδt + µMt

)]
+ γδ

(
µMt − µFt

)
= γδ

(
µMt − µFt

)
.

The second line uses (59) applied to period t and the last line uses the fact that

EM
t

[
δt+1 − γδ

(
nδt + µMt

)]
= 0 (the market thinks its belief is unbiased). This proves

(68). The market thinks the Fed is making a “mistake”and will not be able to achieve its

target output gap on average (recall that the Fed targets a zero output gap, EF
t [ỹt+1] = 0).

Naturally, a demand-optimistic market expects a positive output gap.

Next consider the market’s expectation for the future asset price, pt+1. Using Eq.

(67), along with EM
t

[
y∗t+1

]
= y∗t and E

M
t

[
nδ,t+1 + µFt+1

]
= 0, we obtain

EM
t [pt+1] = y∗t −

η

1− ηE
M
t [ỹt+1]−m.

Combining this with (68) proves (69). With demand inertia, the market further thinks

the Fed will have to reverse course and make a large policy adjustment to address the

future output gaps that its “mistake”will induce. A demand-optimistic market thinks:

once the positive output gap develops, the Fed will realize its “mistake” and will have to

reverse course, implementing a low future “pystar.”

Finally, consider the market’s perception of the current interest rate, it vs iMt , and its

expectation for the future interest rate, EM
t [it+1]. Eqs. (70− 71) follow from combining

(65) with (68). These expressions describe the implications of “behind-the-curve” for

interest rates. A demand-optimistic market thinks the Fed is currently setting “too low”

rates. The market further thinks that, once the positive output gap develops, the Fed will

switch to setting “too high”rates (to implement a low future “pystar”).
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Our final corollary explains the effect of (future and current) disagreements on the

policy interest rate.

Corollary 7 (Disagreements and the policy interest rate). (i) An increase in the scope
of disagreements between the Fed and the market (D) reduces the interest rate it. (ii) Let

iFt denote the interest rate when the market has the same belief as the Fed in the current

period, µMt = µFt (for a given D). When inertia is relatively low (η < 1 − β), a demand
optimistic market (µMt > µFt ) induces the (demand-pessimistic) Fed to set a higher interest

rate that partially accommodates the market’s belief, it > iFt . Conversely, when inertia is

high (η > 1 − β), a demand optimistic market induces the (demand-pessimistic) Fed to
set a lower interest rate that overweights the Fed’s own belief, it < iFt .

The first part follows from Corollary 5; a greater scope of future disagreements in-

creases the risk premium. If the policy did not adjust the interest rate, a greater risk

premium would reduce asset prices below “pystar.”The Fed reduces the interest rate to

keep asset prices at “pystar”(consistent with “the Fed put/call”).

The second part is driven by the effect of (current) disagreements on the market’s

expected return, EM
t [rt+1] (recall that it = EM

t [rt+1] − rpt/2). This depends on the

market’s expectations for future cash flows and future asset prices, EM
t [yt+1] andE

M
t [pt+1]

(see (13)). Corollary 6 implies that current disagreements (“behind-the-curve”) induce

competing effects on EM
t [yt+1] and E

M
t [pt+1]. On the one hand, a demand-optimistic

market expects relatively high cash-flows (driven by the output boom that it anticipates).

On the other hand, the market also expects relatively low asset prices. The expected

return in (65) balances these two forces (see the proof of the proposition for a derivation):

EM
t [rt+1] = ρ+

ηỹt + γδ
(
nδt + µFt

)
1− η +

[
(1− β)− βη

1− η

]
γδ
(
µMt − µFt

)
.

The first term in the square bracket captures the future cash-flow effect of disagreements

and the second term captures the future asset-prices effect. When η < 1−β (relatively low
inertia), the cash flow effect dominates and a more demand-optimistic market (µMt > µFt )

expects a higher return. When η > 1 − β (relatively high inertia), the asset-prices effect
dominates and a more demand-optimistic market expects a lower return.

When inertia is low, a demand-optimistic market expects a high return via the an-

ticipation of high cash flows. This induces a demand-pessimistic Fed to set a relatively

high interest rate that partially accommodates the market’s view. If the Fed did not

adjust the interest rate, the market’s expectations of a high return would increase asset

prices above “pystar.”Conversely, when inertia is high, a demand-optimistic market ex-
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pects a relatively low return via the anticipation of low future asset prices. This induces

a demand-optimistic Fed to cut the rate more aggressively to prevent a decline of asset

prices and implement “pystar.”

Remark 3 (Fed belief surprises as monetary policy shocks). We have assumed that the
market always knows the Fed’s current belief (and vice versa). In practice, the market is

often uncertain about the Fed’s belief and learns it through a policy speech or announce-

ment. In Caballero and Simsek (2022a), we use this observation to develop a theory of

microfounded monetary policy shocks. To illustrate the idea, suppose each period has

two phases. Initially, the market does not know the Fed’s interpretation µFt . Later in

the period, the market learns µFt (before portfolio and consumption decisions). The Fed

knows µMt throughout. In this setting, the revelation of the Fed’s belief to the market

affects financial markets like textbook monetary policy shocks (which are often modeled as

random interest rate changes). For instance, when the Fed is revealed to be more demand-

optimistic than the market expected, the interest rate increases and the aggregate asset

price declines (see Appendix B.3 for a formalization). Unlike the textbook policy shocks,

these shocks are not random: they are “optimal” under the Fed’s belief. These shocks

affect financial markets like random shocks because the market does not share the Fed’s

beliefs and perceives the policy changes induced by the Fed’s beliefs as “mistakes.”12

7. Final Remarks

Summary. We developed a framework to analyze the impact of monetary policy on

asset prices. The central idea is to reverse engineer the Fed’s policy problem to solve for

the aggregate asset price per potential output that ensures future macroeconomic balance

under the Fed’s belief (“pystar”). When the Fed is unconstrained and acts optimally, it

keeps the aggregate asset price close to this level by adjusting its policy tools. In the

core of our analysis, we focused on a two-speed economy where households are slow and

respond to asset prices with a lag. In this context, we derived several results that shed

light on the interaction between monetary policy and asset prices.

12One caveat is that, in the data, monetary policy shocks seem to affect stock prices through the risk
premium (see Bernanke and Kuttner (2005); Bauer et al. (2023)). In our model, monetary policy shocks
operate via the traditional interest rate and cash-flow channels. However, the model features a policy
“mistakes”risk-premium that depends on disagreements (see Corollary 5). If the policy announcement
provides information about the scope of new disagreements (D), then it can also affect the policy risk
premium. In other words, during policy events, the market may not only learn what the Fed thinks, but
also how the Fed thinks– and how much it is likely to deviate from its own view in future periods.
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First, aggregate asset prices are driven by the Fed’s perceptions of macroeconomic

needs– specifically, the Fed’s beliefs about future aggregate demand and supply. Asset

prices are higher when the Fed expects higher aggregate supply and they are lower when

the Fed expects higher aggregate demand. Perhaps surprisingly, traditional financial

forces such as the market’s beliefs for future cash flows and its required risk premium do

not drive aggregate asset prices. Instead, financial forces drive relative asset prices subject

to an adding-up constraint determined by macroeconomic needs as perceived by the Fed.

Second, more precise macroeconomic news that improves the Fed’s ability to predict

the future state of the economy reduces output volatility but it also increases asset price

volatility. When the Fed can predict the future demand better, it preempts and mitigates

demand-driven business cycles, but it does so by inducing greater asset price volatility.

Third, with internal demand inertia, the Fed overshoots the aggregate asset price

upward (resp. downward) to neutralize the recessions (resp. booms) caused by demand

shocks. This overshooting creates the appearance of a disconnect between the performance

of the economy and the financial markets.

Fourth, inflation is negatively correlated with asset prices, regardless of whether it is

driven by demand or supply shocks. A positive demand shock increases the output gap

and inflation, while inducing the Fed to overshoot asset prices downward. A negative

supply shock induces the Fed to target lower asset prices to align future demand with the

lower level of supply. With either shock, positive inflation surprises are bad news for asset

prices. This also implies that the inflation risk premium is typically positive.

Fifth, disagreements between the market and the Fed affect the risk premium and

interest rate. The market anticipates excessive policy-induced volatility and demands a

policy risk premium, which is especially high at times of macroeconomic uncertainty and

disagreements. The market also thinks the Fed is “behind-the-curve” and will reverse

course: for instance, a demand-optimistic market thinks the Fed will induce positive

output gaps after which it will have to overshoot asset prices downward. The market’s

perceptions of excessive policy-induced volatility and “behind-the-curve”affect the policy

interest rate the Fed needs to set to achieve “pystar.”

Robustness and future work. We deliberately kept our analysis stark. Among other

things, we assumed that the Fed is willing and able to use its tools with full potency to

close the output gap (subject to the restrictions from transmission lags). In practice, the

Fed’s power is more limited. The Fed may face an effective lower bound or other interest

rate constraints. Alternatively, the Fed might be reluctant to act too aggressively in fear

of destabilizing the financial sector. Our results are qualitatively robust to allowing for
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these types of monetary policy constraints. Naturally, these constraints dampen the Fed’s

put and its response to aggregate demand shocks. Thus, the constraints allow for some

asset price volatility driven by financial market forces, while mitigating the policy-induced

asset price volatility.

A general theme of our paper is that the Fed targets the aggregate asset price (financial

conditions) rather than the policy interest rate. The policy interest rate is simply one

of the tools the Fed uses to achieve its asset price target. This observation has two

implications. First, our model makes stronger predictions for the aggregate asset price

than for the policy rate. The aggregate asset price is driven by the Fed’s perception of

macroeconomic imbalances. In contrast, the policy interest rate is driven by subtle details

of the model, such as disagreements between the Fed and the market, the extent of internal

demand inertia, and various forces that drive the risk premium. Second, formulating

policy rules in terms of the aggregate asset price, rather than in terms of the policy

rate, could be helpful. Our model supports Taylor-like rules in terms of the aggregate

asset price. For instance, Eq. (37) from Section 4 describes “pystar” as a function of

the current output gap, ỹt (and a second term that incorporates the Fed’s beliefs about

future macroeconomic conditions). In an extension of our model with multiple assets,

where different asset prices might have a different impact on aggregate demand, the

policy would suggest targeting a financial conditions index (FCI) that weights different

asset valuations according to their impact on aggregate demand. We leave the analysis of

the optimal FCI for future work.
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Online Appendices: Not for Publication

A. Appendix: Omitted derivations

This appendix presents the analytical derivations and proofs omitted from the main text.

A.1. Microfoundations for the baseline environment

In this section, we describe the details of the baseline environment that we describe in Section

2.1 and use throughout the paper.

The supply side is the same as in Caballero and Simsek (2021b), with the difference that

here we allow for shocks to potential output. In particular, the real side of the economy features

two types of agents: “asset-holding households”(the households) denoted by superscript i = H,

and “hand-to-mouth agents”denoted by superscript i = HM . There is a single factor, labor.

Hand-to-mouth agents supply labor according to standard intra-period preferences. They

do not hold financial assets and spend all of their income. We write the hand-to-mouth agents’

problem as,

max
Lt

logCHMt − χL
1+ϕ
t

1 + ϕ
(A.1)

QtC
HM
t = WtLt + Tt.

Here, ϕ denotes the Frisch elasticity of labor supply, Qt denotes the nominal price for the final

good, Wt denotes the nominal wage, and Tt denotes lump-sum transfers to labor (described

subsequently). Using the optimality condition for problem (A.1), we obtain a standard labor

supply curve
Wt

Qt
= χLϕt C

HM
t . (A.2)

Households own and spend out of the market portfolio and they supply no labor.

Production is otherwise similar to the standard New Keynesian model. There is a continuum

of monopolistically competitive firms, denoted by ν ∈ [0, 1]. These firms produce differentiated

intermediate goods, Yt (ν), subject to the Cobb-Douglas technology,

Yt (ν) = AtLt (ν)1−α . (A.3)

Here, 1 − α denotes the share of labor in production and At the total factor productivity. We
allow At to change over time to capture supply shocks [see (4)].

A competitive final goods producer combines the intermediate goods according to the CES

40



technology,

Yt =

(∫ 1

0
Yt (ν)

ε−1
ε dν

)ε/(ε−1)
, (A.4)

for some ε > 1. This implies the price of the final consumption good is determined by the ideal

price index,

Qt =

(∫ 1

0
Qt (ν)1−ε dν

)1/(1−ε)
, (A.5)

and the demand for intermediate good firms satisfies,

Yt (ν) ≤
(
Qt (ν)

Qt

)−ε
Yt. (A.6)

Here, Qt (ν) denotes the nominal price set by the intermediate good firm ν.

The labor market clearing condition is∫ 1

0
Lt (ν) dν = Lt. (A.7)

The goods market clearing condition is

Yt = CHt + CHMt . (A.8)

Finally, to simplify the distribution of output across factors, we assume the government taxes

part of the profits lump-sum and redistributes to workers to ensure they receive their production

share of output. Specifically, each intermediate firm pays lump-sum taxes determined as follows:

Tt = (1− α)QtYt −WtLt. (A.9)

This ensures that in equilibrium hand-to-mouth agents receive and spend their production share

of output, (1− α)QtYt, and consume [see (A.1)]

CHMt = (1− α)Yt. (A.10)

Households receive the total profits from the intermediate good firms, which amount to the

residual share of output, Πt ≡
∫ 1
0 Πt (ν) dν = αQtYt.

Flexible-price benchmark and potential output. To characterize the equilibrium, it

is useful to start with a benchmark setting without nominal rigidities. In this benchmark, an
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intermediate good firm ν solves the following problem,

Π = max
Q,L

QY −WtL− Tt (A.11)

where Y = AtL
1−α =

(
Q

Qt

)−ε
Yt.

The firm takes as given the aggregate price, wage, and output, Qt,Wt, Yt, and chooses its price,

labor input, and output Q,L, Y .

The optimal price is given by

Q =
ε

ε− 1
Wt

1

(1− α)AtL−α
. (A.12)

The firm sets an optimal markup over the marginal cost, where the marginal cost depends on

the wage and (inversely) on the marginal product of labor.

In equilibrium, all firms choose the same prices and allocations, Qt = Q and Lt = L.

Substituting this into (A.12), we obtain a labor demand equation,

Wt

Qt
=
ε− 1

ε
(1− α)AtL

−α
t . (A.13)

Combining this with the labor supply equation (A.2), and substituting the hand-to-mouth con-

sumption (A.10), we obtain the equilibrium labor as the solution to,

χ (L∗)ϕ (1− α)Y ∗t =
ε− 1

ε
(1− α)At (L∗)−α .

In equilibrium, output is given by Y ∗t = At (L∗)1−α. Therefore, the equilibrium condition

simplifies to,

χ (L∗)1+ϕ =
ε− 1

ε
. (A.14)

We refer to L∗ as the potential labor supply and Y ∗ = At (L∗)1−α as the potential output.

Fully sticky prices. We next describe the equilibrium with nominal rigidities. For simplic-

ity, we focus on the case with full price stickiness. In particular, intermediate good firms have a

preset nominal price that remains fixed over time, Qt (ν) = Q∗. This implies the nominal price

for the final good is also fixed and given by Qt = Q∗ [see (A.5)]. Then, each intermediate good

firm ν at time t solves the following version of problem (A.11),

Π = max
L

Q∗Y −WtL− Tt (A.15)

where Y = AL1−α ≤ Yt.
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For small aggregate demand shocks (which we assume) each firm optimally chooses to meet

the demand for its goods, Y = AL1−α = Yt. Therefore, each firm’s output is determined by

aggregate demand, which is equal to spending by households and hand-to-mouth agents [see

(A.8)],

Yt = CHt + CHMt .

This establishes Eq. (1) in the main text.

Finally, recall that hand-to-mouth agents’spending is given by CHMt = (1− α)Yt [see Eq.

(A.10)]. Combining this with Yt = CHt + CHMt , the aggregate demand for goods is determined

by the households’spending,

Yt =
CHt
α
.

This establishes Eq. (3) in the main text.

Campbell-Shiller approximation. We finally derive the Campbell-Shiller approximation

in (13). First note that Eq. (5) implies

rt+1 = log

(
αYt+1
Pt+1

Pt+1
Pt

+
Pt+1
Pt

)
= log

(
αYt+1
Pt+1

+ 1

)
+ log

(
Pt+1
Pt

)
= log (1 +Xt+1) + pt+1 − pt. (A.16)

Here, we have defined the dividend price ratio, Xt = αYt/Pt.

Next consider the steady-state value of the dividend-price ratio absent shocks, denoted by

X∗. Following the same steps as in Section 2, and setting the demand shock to zero (δt = 0), we

obtain the steady-state output-asset price relation Y ∗ = (1− β) 1
αβP

∗ (see (17)). This implies

X∗ = αY ∗t /P
∗
t = 1−β

β .

Finally, log-linearize (A.16) around Xt+1 = X∗. Let xt+1 = log (Xt+1/X
∗) denote the

log deviation of the dividend price ratio from its steady-state level. Consider the term,

log (1 +Xt+1) = log (1 +X∗ exp (xt+1)). Using a Taylor approximation around xt+1 = 0, we

obtain

log (1 +Xt+1) ≈ log (1 +X∗) +
X∗

1 +X∗
xt+1

≈ log

(
1

β

)
+ (1− β)

(
log

(
αYt+1
Pt+1

)
− log

(
1− β
β

))
.

Substituting this into (A.16) and collecting the constant terms, we obtain Eq. (13) in the main

text.
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A.2. Omitted derivations in Section 2

Proof of Proposition 1. In the main text, we show that the equilibrium asset price is given

by (18)

pt = p∗t ≡ y∗t − δt −m where m = log

(
1− β
αβ

)
.

Substituting this along with yt+1 = y∗t+1 into (13), we obtain

rt+1 = κ+ (1− β) y∗t+1 + βpt+1 − pt

= κ+ (β − 1) log

(
αβ

1− β

)
+ (1− β) y∗t+1 + β

(
y∗t+1 − δt+1

)
− (y∗t − δt)

= ρ+ (1− β) y∗t+1 + β
(
y∗t+1 − δt+1

)
− (y∗t − δt)

= ρ+ δt + zt+1 − βδt+1.

The third line substitutes κ from (13) and ρ = − log β to calculate the constant term. This last

line substitutes y∗t+1 = y∗t + zt+1 to describe the return in terms of the shocks. This establishes

(19). In the main text, we show that this implies (20).

A.3. Omitted derivations in Section 3

Proof of Proposition 2. Presented in the main text.

Proof of Corollary 1. Most of the proof is presented in the main text. Eqs. (28− 30) follow

from substituting Et
[
δ̃t+1

]
= γδnδt into (24− 26). To calculate the volatility induced by news,

note that γδnδt and δt+1 − γδnδt capture the forecastable and the unforecastable components
of aggregate demand shocks. These components are uncorrelated with one another and have

variance given by

vart (δt+1 − γδnδt) = σ2δ and vart (γδnδ,t+1) = σ2δ − σ2δ . (A.17)

Combining this expression with Eq. (28) establishes Eq. (34) in the main text.

To calculate the risk premium and the interest rate, note that Eq. (13) implies

rt+1 = κ+ (1− β) yt+1 + βpt+1 − pt
= ρ+ (1− β) (y∗t + δt+1 − γδnδt) + β

(
y∗t+1 − γδnδ,t+1

)
− (y∗t − γδnδt)

= ρ+ γδnδt + (1− β) (δt+1 − γδnδt) + β (zt+1 − γδnδ,t+1) .

Here, the second line substitutes yt+1, pt+1, pt using (28) and simplifies the constant terms (sim-

ilar to the proof of Proposition 1). The last line substitutes y∗t+1 = y∗t + zt+1 and simplifies the

expression. This proves (31).
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Finally, combining (31) with (A.17), we obtain Eq. (33). Combining the expression with

(12), we also obtain (32), completing the proof.

A.4. Omitted derivations in Section 4

We first derive Eq. (36). We then present the proofs of the propositions and the corollaries in

Section 3.

Output asset price relation with inertia. Recall that in this section we have the

modified version of the consumption rule

CHt = (1− β)Dt + β

[
ηCHt−1 + (1− η)

1− β
β

Kt−1

]
exp (δt) .

Substituting Dt = αYt and Kt−1 = Pt−1 and CHt = αYt, we obtain

Yt =

(
ηYt−1 + (1− η)

1− β
αβ

Pt−1

)
exp (δt) .

Dividing by Pt−1 and taking logs, we obtain

yt = log

(
η
Yt−1
Pt−1

+ (1− η)
1− β
αβ

)
+ pt−1 + δt

= log (ηZt−1 + (1− η)Z∗) + pt−1 + δt

= log

(
1 + η

(
Zt−1
Z∗
− 1

))
+ logZ∗ + pt−1 + δt. (A.18)

Here, the second line substitutes the output price ratio, Zt = Yt/Pt, and its steady-state level,

Z∗ = Y ∗t /P
∗
t = 1−β

αβ (see (18)).

Next, let zt−1 = log (Zt−1/Z∗) denote the log deviation of the output price ratio from its

steady-state level. Note that

log

(
1 + η

(
Zt−1
Z∗
− 1

))
= log (1 + η (exp (zt−1)− 1)) ≈ ηzt−1.

Here, the last line applies a Taylor approximation around zt−1 = 0. Substituting this into (A.18),

we obtain

yt = ηzt−1 + logZ∗ + pt−1 + δt

= (1− η) logZ∗ + η logZt−1 + pt−1 + δt

= (1− η)m+ η (yt−1 − pt−1) + pt−1 + δt

= (1− η)m+ ηyt−1 + (1− η) pt−1 + δt.
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Here, the second line substitutes zt−1 = log (Zt−1/Z∗). The third line substitutes Zt−1 =

Yt−1/Pt−1 and m = logZ∗ = log
(
1−β
αβ

)
(see (17)). The last line establishes Eq. (36).

Proof of Proposition 3. Presented in the main text.

Proof of Corollary 2. Under the belief structure in Section 3.1, agents’(common) expectation

for the demand shock is given by Et [δt+1] = γδnδt, and their expected supply shock is zero,

Et [zt+1] = 0. After substituting these beliefs, Eqs. (37− 38) (for period t) imply the closed-form

solutions in (40− 42).

Next consider the equilibrium return rt+1 given by (see (13))

rt+1 = κ+ (1− β) yt+1 + βpt+1 − pt.

Combining this with Eqs. (40) and (41), we obtain

rt+1 = κ+ (1− β) (y∗t + δt+1 − γδnδt)

+β

(
y∗t+1 −

ηỹt+1 + γδnδ,t+1
1− η −m

)
−
(
y∗t −

ηỹt + γδnδt
1− η −m

)
= ρ+ (1− β) (y∗t + δt+1 − γδnδt)

+β

(
y∗t + zt+1 −

η (δt+1 − γδnδt − zt+1) + γδnδ,t+1
1− η

)
−
(
y∗t −

η (δt − γδnδ,t−1 − zt) + γδnδt
1− η

)
= ρ+

γδnδt
1− η +

η

1− η (δt − γδnδ,t−1 − zt)

+

(
(1− β)− β η

1− η

)
(δt+1 − γδnδt) +

β

1− η (zt+1 − γδnδ,t+1) .

Here, the second equality simplifies the constant terms and substitutes ỹt+1 = δt+1−γδnδt−zt+1
(see (42)) and y∗t+1 = y∗t + zt+1. The last equality collects similar terms together. This proves

(43).

Next consider the equilibrium interest rate it and the risk premium rpt. Using (12) and (43),

we obtain (44)

it = Et [rt+1]−
1

2
rpt where Et [rt+1] = ρ+

γδnδt
1− η +

η

1− η (δt − γδnδ,t−1 − zt) .

Using (43), we further obtain (45),

rpt = vart (rt+1) =

(
1− η − β

1− η

)2
σ2δ +

(
β

1− η

)2 (
σ2z + σ2δ − σ2δ

)
.

Finally, we use this characterization to calculate the conditional covariance covt−1 (yt, pt).

Note that the unforecastable component of the demand shock, δt − γδnδ,t−1, is uncorrelated
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with the supply shock, zt. It is also uncorrelated with the signal for the next period’s de-

mand, nδt (since the demand shocks are i.i.d.). Combining these observations with (40) implies

covt−1 (yt, pt) = − η
1−ησ

2
δ where σ

2
δ = vart−1 (δt − γδnδ,t−1). This establishes (46) and completes

the proof.

A.5. Omitted derivations in Section 5

We first present the details of the model with inflation that we use in Section 5. We then

present the proof of Proposition 4. Throughout, we adopt the same notation as before for the

real (inflation-adjusted) variables and introduce new notation for the nominal variables. In

particular, Yt, Pt, R
f
t denote the real real output, the real aggregate asset price, and the real

interest rate, respectively.

New-Keynesian Phillips Curve (NKPC). Consider the supply side described in Ap-

pendix A.1. Recall that there is a continuum of monopolistically competitive firms, denoted by

ν ∈ [0, 1], that produce according to the Cobb-Douglas technology (A.3). A final good sector

aggregates the output from these firms according to (A.4). The labor supply is provided by

hand-to-mouth agents according to (A.2).

An intermediate good firm’s price is denoted by Qt (ν). So far, we have assumed that these

prices are permanently fixed. We now assume that in each period, a randomly selected fraction,

1 − θ, of firms reset their nominal prices. The firms that do not adjust their price in period t,
set their labor input to meet the demand for their goods (since firms operate with a markup

and we focus on small shocks).

Consider the firms that adjust their price in period t. Let Qadjt denote the optimal price set

by these firms. We assume Qadjt solves the following version of problem (A.11)

max
Qadjt

∞∑
h=0

θhESt

{
Mt,t+h

(
Yt+h|tQ

adj
t −Wt+hLt+h|t − Tt

)}
(A.19)

where Yt+h|t = At+hL
1−α
t+h|t =

(
Qadjt
Qt+h

)−ε
Yt+h

and Mt,t+h = βh
1/Pt+h
1/Pt

Qt
Qt+h

.

The terms, Lt+h|t, Yt+h|t, denote the input and the output of the firm (that resets its price in

period t) in a future period t + h. The term, Mt,t+h, is the stochastic discount factor (SDF)

between periods t and t+h. Recall that Pt denotes the end-of-period price of the market portfolio.

Consistent with the financial market side of our model, we assume the SDF is determined by

asset-holding households’wealth rather than their consumption. In equilibrium, asset-holding

households’wealth is equal to the value of the market portfolio. We use ESt [·] to denote the

47



firms’(price—setters’) expectations.

The optimality condition for problem (A.19) is given by

∞∑
h=0

θhESt

{
Mt,t+hQ

ε
t+hYt+h

(
Qadjt −

ε

ε− 1

Wt+h

(1− α)At+hL
−α
t+h|t

)}
= 0 (A.20)

where Lt+h|t =

(
Qadjt
Qt+h

) −ε
1−α ( Yt+h

At+h

) 1
1−α

.

We next combine Eq. (A.20) with the remaining equilibrium conditions to derive the New-

Keynesian Phillips curve. Specifically, we log-linearize the equilibrium around the allocation

that features real potential outcomes and zero inflation, that is, Lt = L∗, Yt = Y ∗t and Qt = Q∗

for each t, where recall that L∗ is given by (A.14) and Y ∗ = AtL
∗. Throughout, we use the

notation x̃t = log (Xt/X
∗
t ) to denote the log-linearized version of the corresponding variable Xt.

We also let Zt = Wt
AtQt

denote the normalized (productivity-adjusted) real wage.

We first log-linearize the labor-supply equilibrium condition (A.2) and use CHMt = (1− α)Yt

to obtain

z̃t = ϕl̃t + ỹt. (A.21)

Log-linearizing Eqs. (A.3−A.4) and (A.7), we also obtain

ỹt = (1− α) l̃t. (A.22)

Finally, we log-linearize Eq. (A.20) to obtain

∞∑
h=0

(θβ)hESt

{
q̃adjt −

(
z̃t+h + αl̃t+h|t + q̃t+h

)}
= 0, (A.23)

where l̃t|t+h =
−ε
(
q̃adjt − q̃t+h

)
1− α + l̃t+h.

The second line uses ỹt = (1− α) l̃t.

We next combine Eqs. (A.21−A.23) and rearrange terms to obtain a closed-form solution

for the price set by adjusting firms

q̃adjt = (1− θβ)

∞∑
h=0

(θβ)hESt [Θỹt+h + q̃t+h] ,

where Θ =
1 + ϕ

1− α+ αε
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Since the expression is recursive, we can also write it as a difference equation

q̃adjt = (1− θβ) (Θỹt + q̃t) + θβESt

[
q̃adjt+1

]
. (A.24)

Here, we have used the law of iterated expectations, ESt [·] = ESt
[
ESt+1 [·]

]
.

Next, we consider the aggregate price index (A.5)

Qt =

(
(1− θ)

(
Qadjt

)1−ε
+

∫
St

(Qt−1 (ν))1−ε dν

)1/(1−ε)
=

(
(1− θ)

(
Qadjt

)1−ε
+ θQ1−εt−1

)1/(1−ε)
,

where we have used the observation that a fraction θ of prices are the same as in the last period.

The term, St, denotes the set of sticky firms in period t, and the second line follows from the

assumption that adjusting terms are randomly selected. Log-linearizing the equation, we further

obtain q̃t = (1− θ) q̃adjt + θq̃t−1. After substituting inflation, πt = q̃t − q̃t−1, this implies

πt = (1− θ)
(
q̃adjt − q̃t−1

)
. (A.25)

Hence, inflation is proportional to the price change by adjusting firms.

Finally, note that Eq. (A.24) can be written in terms of the price change of adjusting firms

as

q̃adjt − q̃t−1 = (1− θβ) Θỹt + q̃t − q̃t−1 + θβESt

[
q̃adjt+1 − q̃t

]
.

Substituting πt = q̃t − q̃t−1 and combining with Eq. (A.25), we obtain the New-Keynesian

Phillips curve (47) that we use in the main text

t [πt+1]

where κ =
1− θ
θ

(1− θβ)
1 + ϕ

1− α+ αε
. (A.26)

Output-asset price relation with inflation. We keep the macroeconomic side of the

model the same as in Section 4. Specifically, households’optimality condition is still given by

(35). Following the same steps as in Section 4, the output-asset price relation (36) still holds

yt = (1− η)m+ ηyt−1 + (1− η) pt−1 + δt.

Here, yt = log Yt and pt = logPt denote the log of real output and the log of the real aggregate

asset price.

Financial market equilibrium conditions with inflation. We adjust the financial

market side of the model to allow for a nominal interest rate in addition to the real interest rate.
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Specifically, financial markets feature three types of assets: a market portfolio, a real risk-free

asset, and a nominal risk-free asset. Both risk-free assets are in zero net supply. As before, we

let Rt+1 denote the real return on the market portfolio and R
f
t denote the real risk-free interest

rate. We also let Rfnt denote the nominal risk-free interest rate. The Fed sets the nominal

interest rate, Rfnt , which is no longer the same as the real interest rate, R
f
t .

With these assumptions, portfolio managers (the market) solve the following version of

problem (9)

max
ωt

EMt

[
log

(
Wt

(
Rft + ωt

(
Rt+1 −Rft

)
+ ωnt

(
Rfnt

Qt+1/Qt
−Rft

)))]
.

Here, recall that Qt denotes the aggregate nominal price index. Therefore, Qt+1/Qt denotes the

realized inflation and Rfnt
Qt+1/Qt

denotes the real return on the nominal risk-free asset. Note that

the nominal asset is risky in real terms because its return does not scale with inflation.

In equilibrium, we have ωt = 1 and ωnt = 0. Following the same steps as before, we obtain

two optimality conditions

EMt

[
Rft
Rt+1

]
= 1 and EMt

[
Rfnt

Rt+1Qt+1/Qt

]
= 1.

AssumingRt+1 is (approximately) log-normally distributed, the first optimality condition implies

Eq. (48) in the main text

EMt [rt+1] +
1

2
varMt [rt+1]− it = rpt ≡ varMt [rt+1] .

Assuming Rt+1 and inflation Qt+1/Qt are (approximately) jointly log-normally distributed, the

second optimality condition implies

int − EMt [πt+1]− it +
1

2
vart [πt+1] + covt (πt+1, rt+1) +

1

2
vart [rt+1] = 0.

After combining this with (12) and rearranging terms, we obtain Eq. (49) in the main text[
int − EMt [πt+1] +

1

2
var (πt+1)

]
− it = irpt ≡ −cov (πt+1, rt+1) .

The Fed’s policy problem with inflation. We adjust the Fed’s problem to incorporate

the costs of inflation gaps [cf. (14)]

max
int
−1

2
EFt

[ ∞∑
h=0

βh
(
ỹ2t+h + ψπ2t+h

)]
(A.27)
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Here, ψ denotes the relative welfare weight for the inflation gaps. We normalize the inflation

target to zero so the inflation gap is equal to inflation. Note also that the Fed sets the nominal

interest rate int , which is no longer the same as the real rate it. As before, the Fed sets policy

without commitment.

Finally, we assume all agents (the firm, the market, and the price setters) have common

beliefs. In Caballero and Simsek (2022a), we show that disagreements between the Fed and

the price setters affect the market’s expected inflation and induce a policy trade-off similar to

“cost-push”shocks. Here, we abstract from these effects to focus on other drivers of inflation.

This completes the description of the model with inflation. We next prove Proposition 4,

which characterizes the equilibrium.

Proof of Proposition 4. We conjecture and verify that there is an equilibrium in which Eqs.

(50) hold

Et [πt+1] = 0 and Et [ỹt+1] = 0,

along with Eqs. (37− 39) from Section 4. In particular, the Fed still targets a zero expected

output gap. By doing this, the Fed also achieves zero expected inflation.

As before, the Fed effectively controls the real aggregate asset price pt. Therefore, we write

the Fed’s problem as:

max
pt
−1

2
Et

[ ∞∑
h=0

βh
(
ỹ2t+h + ψπ2t+h

)]
(A.28)

yt = (1− η)m+ ηyt−1 + (1− η) pt−1 + δt

πt = κỹt + βEt [πt+1] .

Here, the last two lines follow from Eqs. (36) and (47), respectively.

Next note that our conjecture for expected inflation, Et [πt+1] = 0, implies that inflation is

given by πt+1 = κỹt+1. Substituting this expression, the Fed’s problem becomes:

max
pt
−1

2

(
1 + ψκ2

) [
ỹt + Et

[
ỹ2t+1

]
+ Et

[ ∞∑
h=2

βhỹ2t+h

]]
yt+1 = (1− η)m+ ηyt + (1− η) pt + δt+1

and ỹt+h = δ̃t+h − Et
[
δ̃t+h

]
for h ≥ 2.

Here, the last line uses our conjecture for the future output gaps (see (39)). The current output

gap ỹt is predetermined and not influenced by the current Fed decision. The future output

gaps {ỹt+2, ỹt+3..} are driven by unforecastable future shocks and therefore they are also not
influenced by the current Fed decision. Using these observations, the optimality condition for

problem (A.28) implies

Et [ỹt+1] = 0. (A.29)
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That is, the Fed targets a zero output gap on average as before.

We next verify our conjecture that the expected inflation is zero, Et [πt+1] = 0. First we

take the period t expectations of the NKPC Eq. (47) for period t+ 1 to obtain

Et [πt+1] = κEt [ỹt+1] + βEt [πt+2] .

We then solve this equation forward (and assume inflation remains bounded in the limit) to

obtain

Et [πt+1] = κ
∞∑
h=1

βhEt+h−1 [ỹt+h] = κEt

[ ∞∑
h=1

βhEt+h−1 [ỹt+h]

]
= 0. (A.30)

Here, the second equality uses the law of iterated expectations and the last equality substitutes

(A.29). This verifies Et [πt+1] = 0.

Since the Fed’s optimality condition from Section 4 still holds (Et [ỹt+1] = 0), the rest of the

equilibrium is the same as in Section 4. In particular, “pystar,”the output, and the output gap

are given by (37− 39). This verifies our conjecture that there is an equilibrium that satisfies

the equations in (50) along with along with Eqs. (37− 39).

Finally, note that Eq. (39) implies the output gap is given by

ỹt = δ̃t − Et−1
[
δ̃t

]
.

Combining this observation with NKPC (47), inflation is given by Eq. (51) in the main text

πt = κỹt = κ
(
δ̃t − Et−1

[
δ̃t

])
.

This completes the proof.

Proof of Corollary 3. Assume the belief structure in Section 3.1. Following the same steps

as in the proof of Corollary 2, we find that Eqs. (40− 45) still apply. Applying the expression

for the output gap along with Eq. (51) implies Eq. (52), completing the proof.

Proof of Corollary 4. Using Corollary 2 (which still applies), the return is given by

rt+1 = ρ+
γδnδt
1− η +

η

1− η (δt − γδnδ,t−1 − zt)

+

(
(1− β)− β η

1− η

)
(δt+1 − γδnδt) +

β

1− η (zt+1 − γδnδ,t+1)

Using (52), inflation is given by

πt+1 = κ (δt+1 − γδnδt − zt+1) .

Combining these expressions, we obtain (53). Combining this with the financial market equilib-

52



rium condition (49), we further obtain (54), completing the proof.

A.6. Omitted derivations in Section 6

Proof of Proposition 5.Consider the model with disagreements and internal demand inertia

described in Section 6. With disagreements, the equilibrium price, output, and output gap still

satisfy (37). The Fed’s expected demand is given by EFt
[
δ̃t+1

]
= EFt [δt+1] = γδ

(
nδt + µFt

)
.

Combining these observations, we obtain Eqs. (61− 63).

Next consider the equilibrium return rt+1, given by (see (13))

rt+1 = κ+ (1− β) yt+1 + βpt+1 − pt.

Substituting for the equilibrium output and the price from (61− 62), we obtain

rt+1 = κ+ (1− β)
(
y∗t + δt+1 − γδ

(
nδt + µFt

))
+β

(
y∗t+1 −

ηỹt+1 + γδ
(
nδ,t+1 + µFt+1

)
1− η −m

)
−
(
y∗t −

ηỹt + γδ
(
nδt + µFt

)
1− η −m

)

=
ρ+

ηỹt+γδ(nδt+µFt )
1−η + (1− β)

(
δt+1 − γδ

(
nδt + µFt

))
β

(
zt+1
1−η −

η(δt+1−γδ(nδt+µFt ))
1−η − γδ(nδ,t+1+µFt+1)

1−η

)
= ρ+

ηỹt + γδ
(
nδt + µFt

)
1− η

+
1− η − β

1− η
(
δt+1 − γδ

(
nδt + µFt

))
+

β

1− η
(
zt+1 − γδ

(
nδ,t+1 + µFt+1

))
.

Here, the second equality simplifies the constant terms and substitutes ỹt+1 = δt+1 −
γδ
(
nδt + µFt

)
− zt+1 and y∗t+1 = y∗t + zt+1. The last equality collects similar terms together.

This proves (64).

Next consider the equilibrium interest rate it. Taking the expectation of (64) under the

market’s belief, we obtain

EMt [rt+1] = ρ+
ηỹt + γδ

(
nδt + µFt

)
1− η +

1− η − β
1− η EMt

[
δt+1 − γδ

(
nδt + µFt

)]
= ρ+

ηỹt + γδ
(
nδt + µFt

)
1− η +

1− η − β
1− η γδ

(
µMt − µFt

)
= ρ+

ηỹt + γδnδt
1− η + (β + η)

γδµ
F
t

1− η + (1− β − η)
γδµ

M
t

1− η

Here, the first line uses EMt [zt+1] = 0 and EMt
[
nδ,t+1 + µFt+1

]
= 0 (the market

thinks the Fed’s future signal will be unbiased on average). The second line substitutes

EMt
[
δt+1 − γδ

(
nδt + µFt

)]
= γδ

(
µMt − µFt

)
, which follows from (68). The last line rearranges
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terms. Combining this expression with (12) and rearranging terms, we obtain (65).

Finally consider the risk premium rpt. Using (64), we obtain

rpt = varMt [rt+1]

= varMt

[
1− η − β

1− η δt+1 +
β

1− η
(
zt+1 − γδ

(
nδ,t+1 + µFt+1

))]
=

(
1− η − β

1− η

)2
σ2δ +

(
β

1− η

)2 [
σ2z + σ2δ − σ2δ + γ2δDσ

2
µ

]
. (A.31)

Here, we have used (60) and the analogue of (A.17). Combining this with (33), we obtain

varMt [rt+1] = rpt = rpcomt + β2γ2δDσ
2
µ

where rpcomt =

(
1− η − β

1− η

)2
σ2δ +

(
β

1− η

)2 (
σ2z + σ2δ − σ2δ

)
.

This establishes (66) and completes the proof.

Proof of Corollary 5. Follows from Eq. (66).

Proof of Corollary 6. Most of the proof is presented in the main text. Here, we derive Eqs.

(70− 71).

Consider the market’s perception of the equilibrium interest rate it. Recall that the interest

rate is given by (65). Substituting µFt = µMt into this expression, we obtain

iMt = ρ+
ηỹt + γδ

(
nδt + µMt

)
1− η − rpt

2
.

Subtracting this from (65), we obtain

it − iMt = − (β + η)
γδ
(
µMt − µFt

)
1− η .

When µMt > µFt , we also have it < iMt . The market thinks the interest rate is “too low”: lower

than what would obtain if the Fed shared the same belief as the market. This proves (70).

Next consider the market’s expectation of the future interest rate EMt [it+1]. Consider Eq.

(65) for period t+ 1,

it+1 = ρ+
ηỹt+1 + γδnδ,t+1

1− η + (β + η)
γδµ

F
t+1

1− η + (1− β − η)
γδµ

M
t+1

1− η −
rpt+1

2
.
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Taking the expectation under the Fed’s belief in period t, we obtain

EFt [it+1] = ρ+
ηEFt [ỹt+1]

1− η − rpt+1
2

= ρ− rpt+1
2

.

The Fed expects future output gaps to be zero. Thus, the Fed expects the future interest rate

to be centered around its long-run level. Taking the expectation under the market’s belief in

period t, we instead obtain

EMt [it+1] = ρ+
ηEMt [ỹt+1]

1− η − rpt+1
2

= ρ+
ηγδ

(
µMt − µFt

)
1− η − rpt+1

2
.

Since the market expects future output gaps to be non-zero, it also expects the future interest

rate to react to these output gaps. In particular, a demand-optimistic market (µMt > µFt )

expects the Fed to induce a positive output gap, which will then force the Fed to aggressively

raise the interest rate. This establishes (71) and completes the proof.

Proof of Corollary 7. The proof of the first part is presented in the main text. For the second

part, note that the interest rate is given by (65). Substituting µMt = µFt into this expression, we

obtain

iFt = ρ+
ηỹt + γδ

(
nδt + µFt

)
1− η − rpt

2
.

Subtracting this from (65), we obtain

it − iFt = (1− β − η)
γδ
(
µMt − µFt

)
1− η .

When µMt > µFt , we have it > iFt if η < 1− β and it < iFt if η > 1− β. The main text describes
the intuition behind these effects. This completes the proof.
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B. Appendix: Omitted extensions

This appendix presents the model extensions omitted from the main text.

B.1. Asset pricing for aggregate stocks and bonds

In the main text, we assume the market portfolio is the only financial claim on the production

firms. In this appendix, we analyze the extension we discuss in Section 2.2 where production

firms can also issue risk-free debt. Thus, there are in general two claims on production firms:

the equity claim (“aggregate stocks”) and the risk-free debt claim (“aggregate bonds”). We

characterize asset prices and show that the price of the market portfolio and the risk-free interest

rate are the same as in Proposition 1. We further show that a positive demand shock reduces

the price of both equity and debt claims, but a positive belief shock for future earnings raises

the price of the equity claim while reducing the price of the debt claim.

Formally, consider the baseline model without transmission lags we analyze in Section 2 (the

analysis could be extended to the setup with lags and inertia). Suppose at the end of period t

(and only in this period) the representative production firm issues short-term debt and uses the

proceeds to buy back equity shares. Let D denote the debt due in period t+ 1. For simplicity,

we assume the debt issuance is suffi ciently small that the firm never defaults (technically we

consider the limit as D → 0). We let P bt and P
s
t denote the price of the debt and equity claims,

respectively. The one-period-ahead return on these claims are given by

Rbt+1 =
D

P bt
and Rst+1 =

αYt+1 + Pt+1 −D
P st

. (B.1)

As before, the market portfolio represents a claim on all financial assets. Its price and return

are given by

Pt = P bt + P st (B.2)

Rt =
P bt
Pt
Rbt+1 +

P st
Pt
Rst+1 =

αYt+1 + Pt+1
Pt

. (B.3)

We adapt the portfolio managers’ (the market’s) problem (9) to allow for investment in

equity and debt claims. Since debt is safe, by no arbitrage its equilibrium return is given by the

risk-free interest rate

Rbt+1 = Rft . (B.4)

We can then formulate the managers’problem as follows

max
ωst

EMt

[
log
(
Wt

(
Rft + ωst

(
Rst+1 −R

f
t

)))]
.
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This is the same as problem (9) with the difference that the managers invest in the equity claim

(rather than in the market portfolio). Finally, we adapt the asset market clearing condition (10)

as follows

Wt = Pt and ωst =
P st
Pt
. (B.5)

In equilibrium, the portfolio weight on the equity claim is equal to its value relative to the

market portfolio.

The following results characterize the asset prices in equilibrium and generalizes the results

from Section 2 to this setting (the proofs are at the end of the section).

Proposition 6 (Asset pricing with stocks and bonds). Consider the baseline model from Section

2 with the difference that firms issue risk-free debt in (only) period t. There is an equilibrium in

which the price of the market portfolio Pt = exp (pt) and the interest rate R
f
t = exp (it) are the

same as in Proposition 1 and given by (18) and (20).

In period t, the price of the debt and the equity claims are given by, respectively,

P bt =
D

Rft
(B.6)

P st = Pt − P bt . (B.7)

For small shocks, these prices approximately satisfy

p̃bt = − (δt + bt) (B.8)

p̃st
P
s
t

P t
= zt − δt − p̃bt

P
b
t

P t
. (B.9)

Here, P
b
t , P

s
t and P t = P

b
t +P

s
t denote the asset prices in a benchmark with no shocks δt = bt =

zt = 0 and p̃bt = log
(
P bt /P

b
)
, p̃st = log

(
P st /P

s
t

)
denote the log deviations of the debt and the

equity claims around the benchmark.

Proposition 6 is an application of the Modigliani-Miller Theorem. Since there are no fi-

nancial frictions, firms’value with leverage is the same as their value without leverage. This

in turn implies that the equilibrium without leverage, characterized in Proposition 1, remains

an equilibrium with leverage. With leverage, we additionally obtain the price of the debt and

equity claims. Eqs. (B.6−B.7) characterize these prices and Eqs. (B.8−B.9) characterize the

log-linearized prices for small shocks. The debt price depends on its face value and the interest

rate. Since equity is a levered claim on firms, its price is equal to the price of the market portfolio

net of the debt claim.

Eqs. (B.8−B.9) characterize the effect of demand shocks and belief shocks on asset prices.

A positive demand shock (δt > 0) reduces the price of the debt and the equity claim, as well as

the price of the market portfolio. This shock affects the prices in period t by raising the interest

57



rate, which reduces the value of most financial assets. A positive belief shock for future cash

flows (bt > 0) generates richer effects than a demand shock: it reduces the price of the debt

claim and raises the price of the equity claim, while leaving the price of the market portfolio

unchanged (as before). While the Fed stabilizes the aggregate asset price, Pt = P st + P bt , it

induces relative price effects between equity and debt claims. Since the debt claim is mainly

driven by the Fed’s interest rate decision, its price decreases. In contrast, since the equity claim

is partly driven by the beliefs about future earnings, the belief shock increases its price despite

the Fed’s interest rate response.

In sum, this extended model shows that macroeconomic needs drive the aggregate asset price,

as in the main text, but traditional financial forces such as cash-flow expectations still influence

relative asset prices. Intuitively, financial forces drive relative prices subject to an adding-up

constraint induced by macroeconomic needs.

Proof of Proposition 6. For periods t + 1 onward, the model is the same as before so the

equilibrium is also unchanged. Consider the equilibrium in period t. We show that there is an

equilibrium in which Pt = exp (pt) and R
f
t = exp (it) are the same as in Proposition 1. To prove

this, we claim that the financial equilibrium condition for the market portfolio is the same as

before,

EMt

[
Rft
Rt+1

]
= 1. (B.10)

This in turn implies that the approximate equilibrium condition (12) still applies. Note also

that the output price relation (17) still holds. These equations imply that pt and it are the same

as in Proposition 1.

It remains to prove the claim in (B.10). To this end, first observe that problem (9) implies

the optimality condition

EMt

(Rst+1 −Rft ) 1

Rft + ωst

(
Rst+1 −R

f
t

)
 = 0. (B.11)

Next note that in equilibrium we have

Rft + ωst

(
Rst+1 −R

f
t

)
= (1− ωst )Rbt + ωstR

s
t+1 = Rt+1.
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Here, we have used (B.4) , (B.5) and (B.3). Likewise, we also have

Rst+1 −R
f
t =

αYt+1 + Pt+1
P st

− D

P st
− D

P bt

=
P st + P bt
P st

(
αYt+1 + Pt+1

P st + P bt
− D

P bt

)
=

P st + P bt
P st

(
Rt+1 −Rft

)
.

Here, we have used (B.3) and Rft = Rbt+1 = D
P bt
. Using (B.11), and substituting the expressions

for Rft + ωst

(
Rst+1 −R

f
t

)
and Rst+1 −R

f
t , we further obtain

P st + P bt
P st

EMt

[(
Rt+1 −Rft

) 1

Rt+1

]
= 0.

Rearranging this expression, we prove (B.10).

Why is the financial market equilibrium condition the same as before? In equilibrium agents

hold the market portfolio, which implies that the stochastic discount factor is the same as before

(1/Rt+1). In addition, stocks are a levered claim on the market portfolio, which implies that

the optimality condition for stocks implies the optimality condition for the market portfolio.

Consequently, the financial market side of the model is unchanged.

Next note that Eqs. (B.6−B.7) follow from Eqs. (B.1) , (B.4) and (B.2). To log-linearize

these equations, we first write them as

P
b
t exp

(
p̃bt

)
= D exp

(
−
(
ρ+ δt + bt −

1

2
rp

))
P
s
t exp (p̃st ) = exp

(
y∗t−1 + zt −m− δt

)
− P bt exp

(
p̃bt

)
.

Here, we substituted it and pt from Eqs. (18) and (20). We then linearize around δt = bt = zt = 0

and substitute P
b
t = D exp

(
−
(
ρ− 1

2rp
))
, P t = exp

(
y∗t−1 −m

)
to obtain

p̃btP
b
t = − (δt + bt)P

b
t

p̃stP
s
t = (zt − δt)P t − p̃btP

b
t .

Rearranging these expressions proves Eqs. (B.8−B.9).

B.2. Macroeconomic news about future supply

In Section 3.1, we analyze the effects of news about future aggregate demand on asset price

volatility. In this appendix, we show that these results are robust to allowing for news about
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future aggregate supply. We also show that supply news does not affect the conditional volatility

of either output or asset prices; even though supply news does affect asset prices (in the predicted

direction).

Formally, suppose the agents receive news about both future demand and supply shocks:

nδt = δt+1 + eδt, where eδt ∼ N
(
0, σ̃2δ

)
nzt = zt+1 + ezt, where ezt ∼ N

(
0, σ̃2z

)
.

For simplicity, we assume that the signal noises eδt and ezt are uncorrelated with each other.

Moreover, the Fed and the market agree on the interpretation of these signals.

Recall that shocks are drawn from i.i.d. distributions, N
(
0, σ2δ

)
and N

(
0, σ2z

)
. Therefore,

after observing nδt the Fed and the market have common posterior beliefs:

δt+1 ∼ N
(
γδnδt, σ

2
δ

)
and zt+1 ∼ N

(
γznzt, σ

2
z

)
where (B.12)

γδ =
1/σ̃2δ

1/σ2δ + 1/σ̃2δ
and γz =

1/σ̃2z
1/σ2z + 1/σ̃2z

σ2δ =
1

1/σ2δ + 1/σ̃2δ
and σ2z =

1

1/σ2z + 1/σ̃2z

The posterior means are dampened versions of the corresponding signals, and the posterior

variances are smaller than the prior variances.

With this setup, agents’common belief for the expected net demand in the next period is

Et

[
δ̃t+1

]
= Et [δt+1 − zt+1] = γδnδt−γznzt. The following corollary to Proposition 2 generalizes

Corollary 1 to this setting.

Corollary 8 (Macroeconomic news about supply and demand). Consider the setup in Propo-

sition 2 with news about both future demand and future supply. The equilibrium is given by:

pt = p∗t ≡ y∗t − γδnδt + γznzt −m (B.13)

yt+1 = y∗t − γδnδt + γznzt + δt+1 (B.14)

ỹt+1 = δt+1 − γδnδt − (zt+1 − γznzt) (B.15)

rt+1 =

(
ρ+ γδnδt

+ (1− β) (δt+1 − γδnδt)

)
+ β

(
zt+1 − γznzt

− (γδnδ,t+1 − γznz,t+1)

)
.(B.16)

it = Et [rt+1]−
1

2
rpt, with Et [rt+1] = ρ+ γδnδt (B.17)

rpt = vart (rt+1) = (1− β)2 σ2δ + β2
(
σ2z + σ2δ − σ2δ

)
. (B.18)

The conditional volatility of output and asset prices are given by

vart (yt+1) = σ2δ and vart (pt+1) = σ2z + σ2δ − σ2δ. (B.19)
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More precise supply news (lower σ̃2z and σ
2
z) does not affect the conditional volatility of output

or the aggregate asset price. As in Corollary 1, more precise demand news (lower σ̃2δ and σ
2
δ)

reduces the conditional volatility of output, increases the conditional volatility of the aggregate

asset price, and increases the risk premium when β > 1− β.

Eq. (B.13) generalize Eq. (28) to the setting with supply news. As before, positive demand

news reduces the aggregate asset price. In contrast, positive supply news increases the aggregate

asset price.

Eqs. (B.14−B.19) generalize Eqs. (29− 34). The last equation shows that the precision of

demand news has the same effect on the volatility of output and the aggregate asset price as in

the main text. Hence, our findings in Section 3.1 is robust to allowing for supply news.

Perhaps surprisingly, Eq. (B.19) also shows that the precision of supply news does not affect

the conditional volatility of output or the aggregate asset price. The supply news frontloads the

adjustment of future output to future supply (yt+1 = y∗t +γznzt+δt+1−γδnδt). However, it does
not affect output contemporaneously, so the supply news does not generate output surprises. The

supply news does affect the current aggregate asset price, so it generates asset price surprises.

However, this effect substitutes one type of asset price volatility with another, leaving the total

asset price volatility unchanged. To see this, note that Eq. (28) implies

vart (pt+1) = vart
(
y∗t+1 − γδnδ,t+1 + γznz,t+1

)
(B.20)

= σ2z +
(
σ2δ − σ2δ

)
+
(
σ2z − σ2z

)
= σ2z + σ2δ − σ2δ .

Here, the second line uses the fact that the conditional volatility of potential output is the

unforecastable supply variance, vart
(
y∗t+1

)
= vart (zt+1 − γznzt) = σ2z. While future supply

news induces volatility (vart (γznz,t+1) = σ2z−σ2z > 0), past supply news reduces the conditional

volatility induced by supply shocks (σ2z < σ2z). Therefore, the supply news does not increase

the total asset price volatility either; it instead frontloads part of the asset price volatility that

would be generated by future supply shocks.

Proof of Corollary 8. Eqs. (B.13−B.15) follow from substituting Et
[
δ̃t+1

]
= γδnδt− γznzt

into (24− 26). Eq. (B.19) follows by taking the variance of these expressions (see (B.20).

To calculate the risk premium and the interest rate, note that Eq. (13) implies

rt+1 = κ+ (1− β) yt+1 + βpt+1 − pt

= ρ+ (1− β) (y∗t − γδnδt + γznzt + δt+1) +

[
β
(
y∗t+1 − γδnδ,t+1 + γznz,t+1

)
− (y∗t − γδnδt + γznzt)

]

= ρ+ γδnδt + (1− β) (δt+1 − γδnδt) +

[
β

(
zt+1 − γznzt

− (γδnδ,t+1 − γznz,t+1)

)]
.
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Here, the second line substitutes yt+1, pt+1, pt using (B.13) and simplifies the constant terms

(similar to the proof of Proposition 1). The last line substitutes y∗t+1 = y∗t + zt+1 and simplifies

the expression. This proves (B.16).

Finally, Eq. (B.18) follows from combining (B.16) with

vart (zt+1 − γznzt) = σ2z and vart (γznz,t+1) = σ2z − σ2z
vart (δt+1 − γδnδt) = σ2δ and vart (γδnδ,t+1) = σ2δ − σ2δ .

Combining (B.16) with (12), we also obtain (B.17), completing the proof.

B.3. Fed belief surprises and monetary policy shocks

In Section 6, we analyze Fed-market disagreements in a setting in which the market always

knows the Fed’s current belief (and vice versa). In practice, the market is often uncertain about

the Fed’s belief and learns it through a policy speech or announcement. In Caballero and Simsek

(2022a), we use this observation to develop a theory of microfounded monetary policy shocks

driven by Fed belief surprises. In this appendix, we extend our model in Section 6 to formally

illustrate these shocks that we briefly discuss in Remark 3.

To capture Fed belief surprises, consider the setup in Section 6 with the difference that each

period has two phases. Initially, the market does not know the Fed’s interpretation µFt . Later

in the period, the market learns µFt (before portfolio and consumption decisions). Our goal is

to understand how the revelation of the Fed’s interpretation to the market affects asset prices.

For simplicity, suppose the Fed knows the market’s interpretation µMt throughout.

Initially, the market does not know the Fed’s interpretation and needs to form an expectation

about it. Using (57), the market thinks

µFt = β̃µMt + ε̃Ft , (B.21)

where β̃ = corr
(
µFt , µ

M
t

)
= 1 − D

2 and ε̃
F
t has a zero mean. Given µ

M
t , the market expects

the Fed’s interpretation to be ẼMt
[
µFt
]

= β̃µMt . Here, we use Ẽ
M
t [·] to denote the expectations

operator before the revelation of the Fed’s actual belief µFt . Therefore, the market also expects

the aggregate asset price to be [see (61)]

ẼMt [pt] = y∗t −
η

1− η ỹt −
γδ

(
nδt + β̃µMt

)
1− η −m.

Later in the period, the market learns µFt and the aggregate price is realized to be

pt = y∗t −
η

1− η ỹt −
γδ
(
nδt + µFt

)
1− η −m.
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Combining these observations, we obtain

pt − ẼMt [pt] = −
γδ

(
µFt − β̃µMt

)
1− η = − γδ ε̃

F
t

1− η . (B.22)

The surprise change in the Fed’s belief (driven by its residual interpretation given the market’s

interpretation) affects asset prices. When the Fed is revealed to be more demand-optimistic

than the market expected, asset prices decline. Conversely, when the Fed is revealed to be more

demand-pessimistic than expected, asset prices increase.

Using (65), it is also easy to check that the revelation of the Fed’s belief affects the interest

rate:

it − ẼMt [it] =
β + η

1− η γδ ε̃
F
t . (B.23)

This surprise increase in the interest rate (partly) drives the valuation decline in (B.22). The

following result summarizes this discussion.

Proposition 7 (Fed belief surprises and monetary policy shocks). When the Fed is revealed to

be more demand-optimistic than the market expected, µFt > ẼMt
[
µFt
]

= β̃µMt , the interest rate

increases and the price of the market portfolio declines (and vice-versa when the Fed is revealed

to be more-demand pessimistic than the market expected, µFt < β̃µMt ).

One caveat is that we have assumed the market learns the Fed’s belief µFt automatically (in

the second phase of the period). In practice, the Fed’s beliefs are usually revealed to the market

through a monetary policy announcement. Our model can also capture this feature because, as

illustrated by (B.23), there is a one-to-one mapping between the policy interest rate and the

Fed’s belief surprise. In particular, when the Fed announces a higher interest rate than the

market expected, this decision can reveal the Fed to be more demand-optimistic than what the

market expected and trigger a monetary policy shock. In Caballero and Simsek (2022a), we

formalize this idea and show that it is optimal for the Fed to set the rate in (65) and fully reveal

its belief. Once the market learns the Fed’s belief, an analogue of Proposition 7 holds.
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