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Abstract

The COVID-19 pandemic and Russia’s invasion of Ukraine have complicated macroe-
conomic forecasting and policymaking due to unprecedented disruptions in supply
chains and energy markets, suggesting a new macroeconomic regime. However, we
are unable to reject the null hypothesis of no structural break in March 2020. We then
examine whether these shocks have increased post-COVID-19. Their sizes were initially
elevated, but then have been gradually returning to pre-pandemic levels. The linear
and nonlinear models reveal that supply chain disruptions cause persistent increases in
expected inflation and headline goods prices, while energy supply shocks have a tran-
sitory inflation effect. The nonlinear model shows that real GDP is adversely affected

by supply shocks in low growth periods.

Keywords: Business cycles, supply-chain disruption shocks, energy shocks, non-
linearities, TVAR, narrative identification
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Non-Technical Summary

The COVID-19 pandemic and Russia’s invasion of Ukraine have significantly altered the
favorable conditions of the Great Moderation, due to unprecedented supply chain and en-
ergy shocks. This study assesses whether a structural break occurred in March 2020 and
whether these shocks have increased in size and frequency post-COVID-19, suggesting a new
macroeconomic regime. The research uses both linear and nonlinear models also to analyze
the impacts of these shocks on inflation and real GDP in the euro area from January 1999
to June 2024.

A key finding is that, despite significant disruptions, there is no statistical evidence
of a structural break in March 2020. This suggests the fundamental relationships in the
macroeconomic data have remained stable, even amidst turmoil. Initially, the size of supply
chain disruption shocks increased after the onset of the pandemic, and energy shocks rose
with the shortage of gas in Europe in Autumn 2021 and the subsequent Russia’s invasion
of Ukraine. However, both types of shocks have been gradually returning to pre-pandemic
levels. This indicates that while these shocks were initially severe, their long-term effect may
be less drastic than feared.

The study distinguishes between the impacts of supply chain disruptions and energy
supply shocks. Supply chain disruptions lead to persistent increases in expected inflation
and headline goods prices, with effects peaking about 18 to 24 months after the initial
shock. In contrast, energy supply shocks tend to have a transient effect on inflation. Both
types of shocks negatively affect real GDP, but the nonlinear model reveals that their impacts
vary depending on economic conditions. Specifically, during periods of low economic growth,
supply chain disruptions have a more significant negative impact on GDP. Conversely, during
high-growth periods, these disruptions primarily lead to increased prices.

Sectoral analysis further reveals that adverse supply shocks have a more pronounced neg-
ative effect on real economic variables when overall macroeconomic conditions are already
weak. This suggests that industries are more vulnerable to supply chain and energy disrup-
tions during economic downturns. On the other hand, during periods of economic strength,
these shocks tend to drive up prices more sharply.

The findings carry important implications for policymakers. The study’s findings have
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important implications for policymaking. The distinct transmission mechanisms of supply
chain and energy shocks necessitate tailored policy responses. The persistence of supply
chain disruptions in driving inflation and their short-term impact on GDP highlight the
need for policies that enhance supply chain resilience. In contrast, the transitory nature of
energy supply shocks on inflation but their pronounced medium-term GDP impact calls for
policies that stabilize energy markets and diversify energy sources.

The energy crisis from 2021 to 2024 has significantly challenged the chemical and other
energy intensive sectors, affecting production costs and competitiveness. To help the indus-
try navigate these challenges, governments may choose to provide financial incentives for
companies to invest in energy-efficient technologies and processes. Reviewing and adjusting
taxation and carbon pricing mechanisms could balance emissions reduction needs with the
economic pressures faced by the industry during the energy crisis.

Similarly, the automotive and related industries have faced significant challenges due
to supply chain disruptions during the post-pandemic period. While governments have
encouraged automotive companies to diversify their supply chains to reduce dependence
on a limited number of suppliers or geographic regions, more efforts are needed to build
resilience against supply chain disruptions. Additionally, governments could partner with
industry to maintain strategic reserves of critical components, such as semiconductors, to
buffer against supply chain disruptions. Fostering public-private partnerships to invest in

and produce critical components domestically is also vital.
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I Introduction

The COVID-19 pandemic and Russia’s invasion of Ukraine have likely reversed the favorable
supply-side conditions of the Great Moderation, significantly impacting macroeconomic fore-
casting and policymaking. These events introduced unprecedented economic shocks, such as
supply chain and gas disruptions, which traditional forecasting models struggled to handle,
complicating policymaking decisions. The sudden and severe disruptions in global supply
chains, adverse energy shocks, and drastic policy interventions created a highly volatile envi-
ronment. By employing euro area data from January 1999 to June 2024, we assess whether a
change in the transmission mechanism has occurred, then we evaluate whether supply chain
and energy shocks in the euro area have increased in size since the COVID-19 pandemic,
indicating a potential shift to a new macroeconomic regime. The analysis is carried out using
linear and nonlinear models, also investigating the relationship between these shocks, real
GDP and both headline and expected inflation.

First, we test for a potential structural break in March 2020 using a Chow test, which
is robust in the presence of possible heteroskedasticity and is applied as a joint test across
multiple time series. The test does not reject the null hypothesis of no structural break.

Second, we employ a linear structural VAR (SVAR) model to extract the stochastic trends
and the shocks of interest. The model’s estimation, using data available until February 2020,
reveals that the dynamics of the stochastic trend remain consistent with those estimated
over the entire sample period up to June 2024, indicating no structural break. We then
examine the relationship between supply chain disruption shocks, energy shocks, inflation
and economic activity. Statistical tests are conducted to identify any significant changes in
the size of these shocks following the onset of COVID-19.

Third, the role of nonlinearities is investigated conditional on the business cycle, as it
is plausible that supply chain disruption and energy supply shocks have a greater impact
on headline and expected inflation during periods of robust economic expansion (e.g. high-
growth regime), when the economy is likely to face resource constraints, which can amplify
the impact of supply shocks. To explore this, a threshold SVAR (TVAR) model, using the
level of underlying real GDP growth as the state variable, is employed. The findings will help

determine whether the large estimated supply shocks from the linear model represent a new
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post-COVID-19 norm or are a result of model misspecification, considering the relevance of
nonlinearities in shock transmission.

The nonlinear pass-through of supply chain disruption shocks and energy supply shocks
on aggregate consumer prices in low and high economic growth regimes, and their implica-
tions for output are important questions that have not received much academic attention.
Investigating these issues could shed some light on whether aggregate prices behave as state-
dependent models suggest.

We identify these shocks through sign, magnitude, and narrative restrictions.! Motor
vehicle output in the euro area was strongly affected by disruptions in global supply chains.
It is a critical sector and, across sectors, it is characterized by the longest supply chain
(Boranova et al., 2022). Therefore, to identify supply chain disruption shocks, we use the
suppliers’ delivery times in the motor vehicle sector, which captures the extent of supply
chain delays in such sector, vehicle production and vehicle prices.

Typically, the 2020 period is shut down in empirical models through dummies (Finck
and Tillmann, 2022) or handled through methods addressing heteroskedasticity (Lenza and
Primiceri, 2022). In this study instead, after having shown that the stochastic trends re-
main stable over the entire 1999-2024 sample period, the extreme volatility characterizing
March-May 2020, with automotive production essentially halting in April, is used to iden-
tify the supply chain disruption shocks (De Santis, 2024). Macroeconomic shocks are better
identified when they are relatively large (Rigobon, 2003). Specifically, we assume that the
supply chain disruption shocks were positive (negative) in March-April (May) 2020. This
assumption is corroborated by microeconometric evidence: by using difference-in-difference
approach, Lebastard et al. (2023) found that the performance of French firms more exposed
to global supply chains was much worse than simple exporters in March-April 2020, while
the opposite was true with the recovery in May 2020. Similarly, we assume that the supply
chain disruption shocks were positive in March 2021 due to the Suez Canal blockage.

Gas supplies from Russia to the European Union (EU) were cut significantly at the

'Edelstein and Kilian (2009a) study the impact of US retail energy price shocks on US consumer expendi-
ture using a linear bivariate VAR identified through timing restrictions. Sign restrictions have been proposed
as a better alternative approach to identify energy supply shocks (Kilian and Murphy, 2012, 2014). The
approach suggested by Kilian and Murphy (2014) was used by Giintner et al. (2024) to study the impact of
gas shocks on German industrial production.
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beginning of the autumn 2021, contributing to the slow replenishment of gas inventories in
Europe ahead of the winter season, and at the end of February 2022 Russia invaded Ukraine.
Both historical episodes caused a sudden surge in energy prices and a drop in manufacturing
production of the energy-intensive sectors, such as chemical and basic metals. Therefore,
to identify retail energy supply shocks, we use retail energy prices, energy production and
energy-intensive manufacturing production. In addition, we assume that energy supply
shocks were positive in October-November 2021 and March 2022. Similarly, we assume that
energy supply shocks were positive in January 2003 due to the major strike in Venezuela,
which paralyzed the oil industry, leading to sharp rises in oil and retail energy prices.

The response of the other three main variables of the structural model, medium-term
expected inflation, headline HICP and real GDP, is always left unrestricted also on impact.
This allows us to be completely agnostic about the impact of the two supply-shocks on the
key variables of the business cycle.

The linear model reveals that supply chain disruption shocks and retail energy supply
shocks act as cost-push shocks, each with distinct transmission mechanisms. Supply chain
disruptions lead to persistent increases in inflation expectations and headline HICP, with
effects peaking around 18 to 24 months, and cause short-term GDP declines, which subse-
quently rebound as the disruptions are alleviated. Conversely, energy supply shocks have
an insignificant impact on expected inflation, a transitory effect on headline HICP and a
pronounced medium-term impact on GDP.

The nonlinear model, through the state-dependent impulse response functions (IRFs),
shows that the effects of the shocks vary with the economic state. Focusing on the main
differences across states, supply chain disruption shocks exert a more substantial positive
impact on headline HICP during periods of high growth, whereas they have a more adverse
effect on real GDP in low growth states. Energy supply shocks negatively impact real GDP
during periods of low economic growth, whereas the economy appears to be unaffected during
times of economic expansion. Demand shocks significantly influence expected inflation during
periods of economic underperformance, while they have a more enduring effect on headline
HICP during times of expansion.

Finally, an analysis of shock magnitudes over time, derived from both the linear and the
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nonlinear SVAR, reveals that while the size of supply chain disruption shocks and demand
shocks were elevated in 2020 and energy supply shocks were elevated in 2022 compared to
pre-pandemic levels, they have been gradually returning to pre-pandemic levels in 2023 and
2024.

The literature on global value chains is large (see for a review Antras and Chor, 2022),
studying the optimal allocation of ownership rights along the value chain (Antras and Chor,
2013) and investigating the effects of demand (Alfaro et al., 2019), interest rate (Antras,
2023), financing conditions (Kim and Shin, 2023) and risk (Ersahin et al., 2023). Acemoglu
and Tahbaz-Salehi (2025) show that the response of the production network generates a
nonlinear amplification pattern over the business cycle. Supply chain disruptions can emerge
as a powerful propagation mechanism during severe downturns, while playing a much more
limited role during milder downturns.

Supply chain disruption shocks have been identified using sign and narrative restrictions
(Finck and Tillmann, 2022; Celasun et al., 2022; Kemp et al., 2023; Kabaca and Tuzcuoglu,
2023; De Santis, 2024; Bai et al., 2024) or imposing prior distributions for structural pa-
rameters (Aastveit et al., 2024). di Giovanni et al. (2022) instead study the propagation of
shocks through interconnected sectors defining the supply chain disruptions as labour short-
ages. Other studies analyse the impact of rising shipping costs on inflation finding a positive
statistical significant effect (Herriford et al., 2016; Carriere-Swallow et al., 2023).

As for the retail energy supply shocks, De Santis (2024) and De Santis and Tornese
(2025) use sign, magnitude and narrative restrictions on retail energy prices and the energy-
intensive sector. Another strand of the literature for the United States looks at gasoline prices
(Edelstein and Kilian, 2009a; Kilian and Zhou, 2022a). Energy supply shocks are typically
studied through the global crude oil market and using linear frameworks.? Qil prices have
also been used in non-linear models. Herrera et al. (2011) find a strong nonlinear response of

U.S. energy-intensive production to oil prices.®> Baumeister and Peersman (2013) investigate

2Among others, see Kilian (2009); Kilian and Murphy (2012, 2014); Aastveit et al. (2015); Baumeister
and Kilian (2016); Baumeister and Hamilton (2019); Caldara et al. (2019); Kéanzig (2021); Aastveit et al.
(2021); Kilian and Zhou (2022b); Baumeister (2023); Aastveit et al. (2024). Another strand of the literature
has looked at gasoline prices (Kilian and Zhou, 2022a) and jointly at global oil market and the European
gas market (Casoli et al., 2024).

3Kilian and Vigfusson (2011) find little evidence of nonlinearity in the relation between oil prices and U.S.
GDP growth, but they address the question using linear methods. One key criticism made by Hamilton (2011)
to Kilian and Vigfusson (2011)’s approach is that one cannot rely on linear models to address nonlinearities.
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the time-varying effects of oil supply shocks on the US economy, but the method is agnostic
about the reason why the effects of the shocks may have changed over time. Holm-Hadulla
and Hubrich (2017) use a Markov Switching model without distinguishing the source of oil
price shocks, while (Mumtaz et al., 2018) identify demand and supply oil price shocks using a
TVAR with sign restrictions, finding that stock prices respond negatively to oil supply shocks
only when oil inflation is low. Knotek and Zaman (2021) assess the asymmetric responses
of consumer spending to energy prices using the reduced form residuals for the analysis.

We prefer to use energy prices in the model, because oil and petroleum products now
account for less than 15% of the energy mix (see Longaric et al., 2025). In the European
Union, oil and oil products are crucial, particularly in the transportation sector and the
petrochemical industry for producing plastics, chemicals, and other goods. However, their
overall share in the energy mix has decreased in favor of natural gas and renewable energy
sources. In industrial production, the primary energy sources are electricity and natural gas,
each comprising approximately one-third of the EU’s industrial energy mix, with oil and
petroleum products, along with renewables and biofuels, each contributing 11%. Although
natural gas and other fossil fuels remain vital for energy production, the share of renewables
in the EU’s electricity generation is steadily increasing. Electricity prices are closely tied to
fossil fuels due to the marginal pricing system, where prices are set by the costliest facility
in use at any given time. As a result, gas often determines the price. Moreover, while oil
can be easily transported globally, gas typically flows through pipelines. Therefore, a gas
shortage cannot be easily substituted. The 2022 Russian invasion of Ukraine and the ensuing
energy dispute with Europe highlighted the critical role of gas and the challenges in reducing
reliance on Russian energy in the short term.

Given these considerations, this paper focuses on linear and nonlinear effects arising from
retail energy supply shocks using a composite energy index, which includes electricity, gas,
liquid fuels, solid fuels, heat energy, and fuels and lubricants for personal transport equip-
ment. Similarly, the analysis considers all activities directly related to energy production in
the euro area, rather than focusing solely on oil production. This broader perspective more

accurately captures fluctuations in the overall energy market and reflects the diverse energy

He also showed that nonlinearities are the consequence of large movements in oil prices.
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mix used in production.
The paper is structured as follows. Section II presents the model. Section III describes

the shocks’ identification strategy. Section IV discusses the key results. Section V concludes.

II Framework

We employ a Bayesian SVAR, where supply and demand shocks are identified using sign,
magnitude and narrative restrictions. Given that the macroeconomic responses could depend
on the state of the economy a TVAR is also estimated, where transitions across states (i.e.,

low- and high-growth regimes) are defined by an endogenously determined underlying real

GDP growth.

II.LA Linear specification

The reduced-form VAR takes the following form

X, = ¢+ (L)X, ; + u, (1)

u, ~ N(0,9Q), (2)

where u; denotes the n x 1 vector of forecast errors, €2 the covariance matrix of the residuals,
c the vector of intercepts and II the lag polynomial.

The model is structured into three primary blocks: a macroeconomic block (comprising
inflation expectations, headline inflation, and real GDP), an energy block (including energy
prices, energy production, and the output of the energy-intensive sector), and an automo-
tive sector block (encompassing vehicle producer prices, vehicle production, and suppliers’
delivery times in the vehicle sector). The vector x; = [7¢, ps, Y, PS, ye, y2, ye, yi, s¢]" defines
the nine variables of the SVAR, where 7¢ denotes the SPF 2-year inflation expectations,* p;

headline HICP, pj the vehicle producer price, p; the energy price, y, real GDP, y; the vehicle

4The European Central Bank’s SPF collects information on the expected rates of inflation in the euro
area at several horizons, ranging from the current year to the longer term. The SPF began in 1999. The
aggregate results and microdata are published four times a year. The quarterly observations are linearly
interporlated to obtain the monthly frequency.
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production, y¢ energy production,® y¢ the output of the energy-intensive sector and s? the
suppliers’ delivery times of the vehicle sector. All variables, except s; and 7y, are defined in
logs.

The stability condition of a SVAR requires that all the roots, r, of I

TI(r)| = [Tn — Iyr — Ipr® — .. — TLrP| = 0, (3)

lie outside the unit circle, |r > 0|. This guarantees that the system of equations is stationary.

Inference on the reduced form parameters of the SVAR is performed in a Bayesian frame-
work using a standard Monte Carlo algorithm of the type described by Kadiyala and Karlsson
(1997), which allows to draw from the posterior of the model parameters.

For the parameters, we assume natural conjugate Normal-Inverse-Wishart (N-IW) priors.
The IW priors for €2 have n + 2 degrees of freedom and diagonal scale matrix with the i-
th diagonal elements equal to the mean squared error from estimating an AR(1) for the
i-th variable. Conditional on €2, the priors for II are Normal with Minnesota-type mean
and variance (Doan et al., 1984), and complemented with a dummy-initial observation prior
(Sims, 1993) that is consistent with the assumption of cointegration.

Detailed information on the dataset is provided in the Appendix with the time series
shown in Figure A1l. The monthly sample spans over the period going from January 1999 to
June 2024. We convert real GDP to a monthly frequency, applying the method proposed
by Chow and Lin (1971) and utilizing monthly data from industrial production and real
retail sales. While the quarter-on-quarter real GDP growth rates align with observed values,
the intra-quarter dynamics follow those of industrial production and real retail sales. Thus,
this monthly real GDP series serves as a coincident business cycle indicator, capturing both
supply and demand factors, but the GDP series is fully recovered in quarterly terms.” A

robustness check is conducted using industrial production, which is available on a monthly

SWe take the MIG (Main Industrial Groupings) energy production definition by Eurostat. It includes
extraction of crude petroleum and natural gas, mining of coal and lignite, mining of uranium and thorium
ores, manufacture of coke and refined petroleum products, production and distribution of electricity, gas,
steam, and air conditioning.

5We set the lag order p to 6 in order to estimate less parameters given the sample size. The use of
six lags in a monthly VAR is not unusual (e.g., for example, Ludvigson et al., 2021; Caggiano et al., 2021;
Cascaldi-Garcia and Galvao, 2021).

A similar procedure was undertaken by Bernanke and Mihov (1998) and Uhlig (2005).
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frequency, instead of real GDP.

The Suppliers’ Delivery Times Index from Standard and Poor’s (S&P) Global Purchasing
Managers’ Index (PMI) business surveys assess the degree of supply chain delays within an
economy, acting as a crucial indicator of capacity constraints. In these surveys, purchasing
managers in the vehicle sector report whether their suppliers are taking more or less time,
on average, to deliver inputs to their factories. This information is particularly vital due to
the industry’s just-in-time strategy, highly personalized car configurations, and strict safety
requirements necessitating specific chips.

During the 2020-2022 period, a shortage of chips and other essential components for
assembling new motor vehicles led to an unprecedented reduction in supply. Container ves-
sel activity faced significant disruptions due to the pandemic. The global misallocation of
containers, following the collapse of world trade in March and April 2020, and the reschedul-
ing of numerous cargo vessels arriving late at their destinations, resulted in considerable
supply bottlenecks.® These disruptions in cargo activity affected all manufacturing sectors,
particularly those with the longest supply chains, such as the automotive industry.

Another factor exacerbating these supply bottlenecks was the renewed lockdown mea-
sures due to the spread of the Delta variant in certain Asia-Pacific countries, including
Malaysia, Singapore, Thailand, and Vietnam. These regions are crucial to semiconductor
chip production, and the lockdowns generated a crisis in the supply of semiconductors.

Therefore, the use of suppliers’ delivery times of the vehicle sector together with auto-
motive production and car prices are a suitable candidate to identify disruption in supply
chains.” Notice that the suppliers’ delivery times rose during the global financial crisis in
2008-2009 and the sovereign debt crisis in 2010-2011 because they were driven by negative
demand shocks, which tend to shorten the suppliers’ delivery times, given that more re-

sources are available to satisfy diminished demand. Instead, the index dropped in March

8 According to UNCTAD, the average time spent by container vessels in ports in the first half of 2021
was 11% higher compared to the pre-pandemic average in 2018-19. In Europe, due to congestion, scheduling
delays, and infrastructure constraints, German and French ports experienced a significant increase in average
port stays—42% and 25% higher than their 2018-19 averages, respectively—exceeding even those seen in the
United States.

9The motor vehicle industry is present in several euro area countries covering 93.6% of euro area GDP in
2021 and, therefore, making the sector a good proxy for the analysis. According to the European Automobile
Manufacturers’ Association, or ACEA, motor vehicles were produced in the following 12 euro area countries:
Austria, Belgium, Finland, France, Germany, Italy, Lithuania, the Netherlands, Portugal, Slovakia, Slovenia
and Spain.
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and April 2020, it jumped back in May 2020 and it recovered in the summer 2020 to drop
again in the autumn 2020. The sharp lengthening recorded after the pandemic hit in March
2020 can be exploited, because it was driven by supply considerations, as we can exclude the
hypothesis that demand rose sharply in that period. Instead, the lengthening recorded in the
autumn 2020 can be either driven by the sharp recovery in demand (for work-related elec-
tronic equipment) or by adverse supply shocks to the supply chain. We exploit the extreme
volatility during the spring 2020 to identify the supply chain disruption shocks.

Gas and renewable sources like wind, solar, geothermal and hydropower have become im-
portant alternative sources in the last two decades for energy supplies’ security motives and
for environmental issues. Their prices are only weakly correlated with oil prices. Therefore,
we employ the HICP category "Energy (ENRGY)” for goods and services, rather than oil
prices to identify energy shocks. The retail energy price includes electricity, gas, liquid fuels,
solid fuels, heat energy, and fuels and lubricants for personal transport equipment. As for
energy production, we take the MIG (Main Industrial Groupings) energy production defini-
tion by Eurostat. It includes extraction of crude petroleum and natural gas, mining of coal
and lignite, mining of uranium and thorium ores, manufacture of coke and refined petroleum
products, production and distribution of electricity, gas, steam, and air conditioning.

The energy intensive sector is defined by aggregating the production of chemicals, chemi-
cal products and basic metals using time-varying weights provided by Eurostat. The energy-

intensive sector accounts on average for about 10% of euro area industrial production.

II.B Nonlinear specification

We are also interested in exploring the nonlinearities involved in the propagation of supply
chain disruptions, energy supply issues, and aggregate demand shocks. Throughout the
paper, we present results derived from both the linear SVAR and the TVAR models. We
do this because it is important to identify which aspects of the results are captured by both
models and which aspects are overlooked by the linear SVAR. The SVAR is the standard
model in practitioners’ toolkit and it represents a specifically restricted version of the more

general TVAR.
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The reduced-form TVAR takes the following form

Xt = (CLow + HLow(L)Xt—l)I{Zt—l < Z*}+

(crigh + Mpign(L)Xy—1) I {z-1 > 2"} + uy,
Uy ~ N<07 Qt)? (5)
Qt - QLow]{Zt—l < Z*} + QHigh[{Zt—l 2 Z*}, (6)

where u; denotes the n x 1 vector of forecast errors, €2, the state-contingent covariance
matrix of the residuals, z; the state variable, z* a threshold of 2, €1, and cpig the vector
of intercepts in the two regimes and Il,,, ITx;,, the lag polynomials. The regime switches
are governed by the indicator function I and are indexed by ¢ — 1 to avoid endogeneity
problems.

As for linear VARs, the stability condition of a TVAR requires that all the roots, r, of

]-_-[Low and ]-_-[Hz'gh

TLs(r)| = |In — g7 — HS727’2 — .. — g, =0, S € (Low, High), (7)

lie outside the unit circle, |r > 1|. This guarantees that the system of equations is stationary
within each regime.!°

The state variable, z;, is assumed to depend on current and past month-on-month real
GDP growth using an exponentially weighted moving average (EWMA), which gives larger
weights, o, to the most recent observations and geometrically declining weights to past real

GDP growth rates, z = Y .y (1l — @) (yt—i — y1—1—;). Hence, z; is a function of the entire

history of y; and can be written as:

z=aly —y1)+ (1 —a)zq, a€(0,1). (8)

10The condition that all the roots in each regime lie outside the unit circle ensures that the system is
locally stationary, ruling out explosive behaviours. In this context Franses and Dijk (2000) discuss the
issue of stationarity in high-order non-linear models, suggesting that a pragmatic way to investigate the
stationarity properties of such models is to perform a deterministic simulation. This involves computing
the values of the variables, given starting values, while setting all shocks equal to zero. Essentially, the
simulations we employ to generate non-linear IRF's are similar in spirit to the one suggested by the authors,
and show that none of our posterior draws display explosive or oscillating (across regimes) behaviours. Thus,
the model aligns with the definition of global stationarity given by Franses and Dijk (2000).
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For the parameters of both regimes, we assume natural conjugate Normal-Inverse-Wishart
(N-IW) priors. The IW priors for ,,, and 4, have n+ 2 degrees of freedom and diagonal
scale matrix with the i-th diagonal elements equal to the mean squared error from estimating
an AR(1) for the i-th variable. Conditional on €4, and Qp;gh, the priors for I, and g,
are Normal with Minnesota-type mean and variance, and complemented with a dummy-
initial observation prior.

Inference on the reduced form parameters of the TVAR is performed in a Bayesian
framework using a multivariate version of the sampler developed in Chen and Lee (1995). The
posterior draws of reduced form parameters are then transformed into structural parameters
that satisfy the desired restrictions employing the rejection sampler of Rubio-Ramirez et al.
(2010). Narrative restrictions are therefore informative about the identification of shocks in
the regime in which the event took place. The sampler is described in the Appendix.

One disadvantage of the TVAR model is its abrupt regime changes, which occur when
the threshold variable crosses a specific value. To mitigate the issue of sudden and erratic
”jumps” between regimes from one month to the next, a condition is imposed that requires
the threshold variable to remain in the same regime for at least two consecutive periods
before transitioning. This adjustment ensures more stable and meaningful shifts between
states, addressing the erratic behaviour inherent in the original TVAR specification.

A natural alternative to this approach would be the use of a Smooth-Transition SVAR.
However, it is important to note that, unlike TVARs, a Smooth-Transition dynamic for
reduced-form parameters does not translate into a Smooth-Transition dynamic for structural
parameters, which are the basis for IRFs. Specifically, assuming a smooth transition between
the two regimes in Equation (6) does not imply that the impact matrix (which defines
the contemporaneous reaction of variables to a shock) is a weighted average of the impact
matrices from the two extreme regimes. This crucially means that any narrative restriction
imposed would be uninformative for identifying structural shocks in periods other than the

one to which the narrative refers.
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II.C The state variable

In several studies, the state variable is computed using a moving average of the last months
of the variable of interest (e.g. Tenreyro and Thwaites, 2016; Ramey and Zubairy, 2018;
Knotek and Zaman, 2021). This approach tends by construction to postpone the potential
change in regime, if the shock is not relatively large. The solution proposed by others is to
take a centered moving average, between t — h and t + h (e.g. Auerbach and Gorodnichenko,
2012; Ascari and Haber, 2022). However, this provides inconsistent estimates, because the
state variable ought to be predetermined, so that it is uncorrelated with the shock happening
at time ¢ or in future periods.

We construct the state variable, z;, using (8). Assigning a relatively larger weight to
the most recent observations allows for better capturing the timing of regime changes. We
calibrate o such that z; comoves closely with year-on-year real GDP growth, a measure
closely monitored by policymakers and market participants. This is achieved with o« = 0.125.
Specifically, z; is calculated using month-on-month real GDP growth starting from January
1995, as a sufficient number of observations are required to estimate the underlying real GDP
growth, with a = 0.125. Over the sample period January 1999 - June 2024, the correlation
between underlying real GDP growth, z;, and year-on-year real GDP growht is 84% (see
Figure 1). The median of our annualised monthly state variable is 1.6% and of the annual
real GDP growth rate is 1.3%. This threshold choice is further supported by a grid search
over possible percentile values of the observations. The marginal likelihood is maximized at
the 53rd percentile, suggesting a threshold for z; at 1.7% annualized. Using the median has
the advantage that the potential differential results in the two regimes do not depend on the

number of observations.

IIT Shocks’ Identification

The reduced form residuals can be written as

u; = Baletv (9)
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in the linear specification, where B, Lig the structural impact multiplier matrix, and ¢, is

the vector of standard Normal structural shocks. and as
w = (Ba’lLowI{zt,l <zZ'}+ B&}ﬁgh[{zt,l > 2" ey, (10)

in the nonlinear setting, where By 1Low and B }{Z g are the structural impact multiplier ma-
trices in the low- and high-inflation regimes. The differences in the propagation of shocks
across regimes is then due to differences in the impact matrices By, 1w and B, llqigh and
differences in lag polynomial Il and ILg;g,.

Given the reduced form parameters, the set of permissible impact matrices is infinite and
the impact matrices cannot be identified uniquely from the data. Shocks are therefore iden-
tified using sign, magnitude and narrative restrictions. We adapt the narrative identification
method of Antolin-Diaz and Rubio-Ramirez (2018) to the non-linear setting, refraining from

applying the importance weighting step as suggested by Giacomini et al. (2020).

III.A Sign, Magnitude and Narrative Restrictions

The restrictions imposed on shocks are summarized in Table 1. Sign and magnitude restric-
tions allow to estimate a set identified model. Narrative restrictions are imposed to sharpen
the identification of the shocks.

Sign restrictions. We posit that supply chain disruption shocks lead to reductions in the
one-step-ahead forecast errors for vehicle output and suppliers’ delivery times, while simul-
taneously causing an increase in motor vehicle prices. Similarly, we hypothesize that adverse
energy supply shocks result in higher one-step-ahead forecast errors for energy prices, and
lower forecast errors for energy production and the manufacturing output of energy-intensive
goods. These assumptions are consistent with those proposed by Kilian and Murphy (2012),
Baumeister and Hamilton (2019) and De Santis (2024). The responses of real GDP, headline
prices, and expected inflation are determined endogenously at impact. This approach is
taken to circumvent the necessity for a priori judgments regarding the sign and timing of
shock propagation on aggregate economic activity.

As suggested by Canova and Paustian (2011), improved inference related to the shocks of
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interest can be achieved by identifying additional macroeconomic shocks, even if they are not
the primary focus of the analysis. Therefore, in addition to identifying two supply shocks,
we also identify specific demand shocks, which affect both energy prices and the pressure
on the supply chains. We assume that demand shocks cause one-step-ahead forecast errors
for headline HICP, energy HICP and GDP to move in the same direction, while causing the
one-step-ahead forecast errors for suppliers’ delivery times to move in the opposite direction.
The remaining shocks are left unlabeled.

Magnitude restrictions. The sign restrictions alone are insufficient to distinguish
between the two supply shocks. To disentangle them, we employ magnitude restrictions
that affect the forecast error variance decomposition (FEVD) of specific variables at the
point of impact. Arias et al. (2021) compare the effects of two shocks on the same variable,
enabling them to impose magnitude restrictions on the impulse response functions (IRFs) at
impact. In contrast, we compare the effects of a specific shock on two different variables with
distinct variances. Therefore, we normalize the effects through the FEVD. In other words,
rather than imposing bounds on the FEVD as in Volpicella (2022), we impose inequality
restrictions between FEVDs of different shocks. Specifically, we assume that supply chain
disruption shocks contribute more to the FEVD of suppliers’ delivery times at impact than
to the Energy HICP, whereas energy supply shocks contribute more to the FEVD of the
Energy HICP at impact than to suppliers’ delivery times. This distinction is illustrated in
Table 1 with '+4’ versus +’. Like any identification restriction, the one we have described
is not entirely without consequence. However, we believe it is generally acceptable. This
assumption simply posits that, on impact, a supply chain disruption shock causes a greater
proportion of the unexpected variation observed in automotive suppliers’ delivery times
compared to the variation it induces in the Energy HICP. Similarly, on impact, the energy
supply shock contributes more to the unexpected variation in the Energy HICP than it does
to the unexpected time variation seen in suppliers’ delivery times.

Narrative sign restrictions. Among the admissible models that satisfy the sign and
magnitude restrictions, we follow the suggestion of Antolin-Diaz and Rubio-Ramirez (2018)
and assume that the supply chain disruption shocks and energy supply shocks must be

positive on a specific date t.
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Table 1: Sign, magnitude and narrative restrictions

Supply chain disruption Energy supply Demand

Variables

Panel A: Sign restrictions on the impact matriz BO_1

Expected inflation 2-year ahead
Headline HICP

Real GDP

Vehicle prices

Vehicle output

Vehicle suppliers’ delivery times
Energy prices

Energy output

Energy-intensive output

+
+

+ +

Variables

Panel B: Magnitude restrictions on the FEVD at h =0

Vehicle suppliers’ delivery times
Energy HICP

++ +
+ ++

Dates Panel C: Narrative sign restrictions

03/20 - 04/20 + -
05/20 - +
10/21 - 11/21 +

03/22 +

Dates Panel D: Sign contribution restrictions

04/20 (low growth) FES?

03/21 (high growth) FEs¢

01/03 (low growth) FEP:

03/22 (high growth) FEP?

In March and April 2020, the economy froze due to the restrictions introduced by the
governments to contain the pandemic. Intermediate goods could not be supplied timely and
the demand of goods and services dropped because people were forced to stayed at home.
Therefore, we assume that supply chain disruption shocks were positive, while demand shocks
were negative, in March and April of 2020. The sharp fall in economic activity was followed
by a dramatic rise in May 2020. In order to characterize the V-shape recovery, we assume
that in May 2020 supply chain disruption shocks were negative and demand shocks were
positive.

In March 2021, the Suez Canal was totally blocked for six days by a 400 metre-long
container ship. The obstruction created a massive traffic jam in the vital passage, straining
supply chains already burdened by the coronavirus pandemic. Therefore, we assume that the
supply chain disruption shocks were positive in that month. A similar assumption is made
by Finck and Tillmann (2022), while Furceri et al. (2022) use the Suez Canal obstruction in
March 2021 as an exogenous instrument for the identification of shipping shocks.

On December 2, 2002, a major strike started in Venezuela, primarily targeting the state

oil company PDVSA. The strike aimed to oust President Chévez, who was perceived as
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anti-business and threatening to private property. It paralyzed the oil industry, which is
vital to Venezuela’s economy, leading to severe economic disruption. The Brent oil price
rose month-on-month by 8.2% and 12.4% in December 2002 and January 2003, respectively.
The pass-through to energy prices implied an increase in euro area energy prices by 3.2% in
January 2023. Ultimately, the strike failed after weeks of turmoil, and Chévez’s government
regained control of PDVSA. Therefore, we assume that energy supply shocks were positive
in that month.

In autumn 2021 and again in March 2022, euro area energy prices rose sharply, as a
result of the cut in Russian gas supplies to Europe via the Yamal-Europe pipeline and in
the aftermath of the Russian invasion of Ukraine. Almost 30% of the EU crude oil imports,
40% of the EU natural gas imports and 50% of EU solid fossil fuel (mostly coal) imports
originated from Russia. By keeping deliveries to Europe deliberately tight, Russia engineered
an energy crunch and the ballooning of gas prices. Over the same period, the production of
the energy intensive sector (chemicals and basic metals) dropped. We assume that energy
supply shocks are positive in these three months.!!

The demand shocks are fully captured by the sign restrictions, including the discretionary
reaction of fiscal policy, which has been rather significant over the period 2020-22. However,
there are some effects of reopening that can be captured only through narrative restrictions.
We assume that all demand shocks were negative in March and April 2020, as households
were constrained to consume being forced to stay at home. At the same time, we assume
that all demand shocks were positive in May 2020 with the partial reopening of the activities.

In the appendix, we also consider other narratives that might have affected demand.
The success of the vaccination programme against Covid-19 allowed governments to lift the
restrictions from March 2021. In Germany, for example, hairdressers were allowed to reopen
from March 1, 2021. Subsequently, Germany announced the reopening to tourists on June
15th. In March and June 2021, euro area monthly real GDP growth is estimated to have

risen by 2.5% and 2.1% month-on-month, respectively.!? Finally, we assume that the demand

1 Given the sharp rise in energy prices in March 2022 following the invasion of Ukraine, we also assume
that the 1-step ahead forecast error of energy prices is mostly explained by energy supply shocks.

12Tn March and June 2021, retail sales rose by 3.9% and 2.5% month-on-month, and service production
rose by 3.5% and 3.7%respectively, mainly due to higher demand for high contact-intensive services, such as
hotels, restaurant, arts, entertainment and transport.
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shocks were positive in May 2022, as output rose strongly in that month, despite the war in
Ukraine. Most of the unexpectedly robust growth was due to strong activity in the services
sector following the lifting of most pandemic-related restrictions (see ECB, 2022). In the
Appendix, we assume that all demand shocks in these three months are positive and show
that the results are robust to such assumptions.

Signed contribution restrictions. To refine the identification of demand from supply
shocks, we impose specific restrictions on key dates, ensuring that supply-disruption shocks
and energy supply shocks are the primary contributors to the one-step-ahead forecast errors
in vehicle suppliers’ delivery times and energy prices, respectively.

For vehicle output suppliers’ delivery times, this assumption is applied in April 2020
and March 2021 (refer to Panel D of Table 1). In particular, the sharp decline in vehicle
suppliers’ delivery times observed after the onset of the pandemic can be leveraged to identify
supply chain disruption shocks, as it cannot be driven by a significant demand increase
during that period. It is worth mentioning that, during April 2020, the underlying real
GDP growth experienced a contraction, whereas economic activity surged beyond its median
value around March 2021. These periods align to provide at least one signed contribution
restriction for each economic regime, making them highly informative for identifying supply
chain disruption shocks.

For energy prices, the sign contribution restriction is applied in January 2003, a period
marked by low growth, and in March 2022, a period characterized by high growth. These
assumptions allow us to effectively identify energy shocks.

Following De Santis and Van der Weken (2022), the identification is less restrictive than
Antolin-Diaz and Rubio-Ramirez (2018), as we allow the unrestricted shocks to have an
even larger contribution to the one-step ahead forecast error of the vehicle output suppliers’
delivery times and energy prices, if the contribution of that unrestricted shock moves such

forecast errors in the opposite direction.

III.B Nonlinear Structural Impulse Responses

Structural shocks, €¢;, may have nonlinear effects on X;. They depend on the history of the

data, I';_;, and on the sign and magnitude of the structural shocks, ¢;, with effects from
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ttot+ k. z_,is a function of y,_; and, therefore, z;, 2z;y1,...., 241x_1 are endogenously
determined in the TVAR. To construct the structural response functions, the feedback from
future changes in z;_; into the dynamics of macroeconomic system outght to be taken into
account.

Following Balke (2000) in a TVAR setting and Koop et al. (1996),'3 who proposed the
construction of the response functions using the conditional expectations, we compute the
nonlinear structural IRFs as the difference between the expectations of the realizations X,
at horizon k, conditional on a given value of structural shock of interest, ¢;, and the informa-
tion set at time ¢t — 1, I';_;, and the expectations of the realizations X, conditioned only
on I'y_;:

IRFx s(k, €, 1) = E(Xpqp| Doy €0) — E(Xpqp Tea), (11)

where S € {Low, High} indicates whether the shock at time ¢ impacts the economy while
it is in the low- or high-growth state. The conditional expectations are calculated by sim-
ulating forward the model. In such simulation, all structural shocks are drawn from their
distribution, with the exception of the shock of interest at time t, which is set equal to the
value € in the construction of E(X¢ k|1, €).

It is worth emphasizing that the switch among regimes is treated as endogenous, as the
economy can shift from low to high economic growth regimes or viceversa over the simulation
horizon, depending on the sign and the size of the shock, the estimated parameters and the
specific history of the system prior to the shock. The starting points are assumed to be
the mean of all the in-sample observations in each regime, in order to obtain the most

representative picture of the dynamics associated to each regime.

IV Business Cycle Response to Economic Shocks

IV.A Structural break and stochastic trends

Since the identification relies on the extraordinary volatility occurred during and after the

Covid-19 period, we first assess whether there are no significant structural breaks in 2020.

13Koop et al. (1996) were not concerned about structural identification, they used the reduced form
residuals. Given that we focus on structural identification, the algorithm differs from Koop et al.’s approach.
See also Kilian and Liitkepohl (2017, Chapter 18) for a discussion of state dependent IRFs.
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We formally test for a potential structural break in March 2020 using a Chow test. This
test checks the hypothesis that the slope parameters of the VAR model do not change in the
post-March 2020 period. To make the test robust to the possible presence of heteroskedas-
ticity, we compute the p-value employing the wild bootstrap approach proposed by Hafner
and Herwartz (2009).1

It is worth noting that a sufficient assumption for standard inference to apply is that the
system is stable, as in Eq. 7. Nonetheless, correct inference can still be achieved even if a
unit root is present, provided that the lag length of the estimated model exceeds the true
lag length, as discussed by Dolado and Liitkepohl (1996). Given that the AIC, BIC, and HQ
information criteria recommend using 5, 1, and 2 lags respectively, it is highly likely that
our estimated models are lag-augmented, and hence that the conditions outlined by Dolado
and Liitkepohl (1996) apply.

The Chow test does not reject the hypothesis of no structural break, yielding a p-value
of 0.26. This indicates that there is no evidence of a change in the co-movement of the
variables after the Covid-19 outbreak. Furthermore, we conducted the same test to verify
that also the slope parameters of the TVAR remained constant within both regimes after
March 2020. The p-values, 0.14 for the high-growth regime and 0.97 for the low-growth
regime, are significantly higher than any reasonable confidence level, further supporting the
stability of these parameters.

Additionally, we compare the dynamics of the stochastic trend implied by a model es-
timated with data available until February 2020 with those estimated for the post-March
2020 period. Consistent with previous findings, a joint Chow test on the slope parameters of
AR(6) models estimated for the stochastic trends of all variables does not reject the hypoth-
esis of no breaks, yielding a p-value of 0.20. All in all, the difference between the observed
values and their stochastic trend can be explained by macroeconomic shocks, which we need

to identify.

14We perform 1000 bootstrap iterations, computing the Wald statistics based on White-type
heteroskedasticity-robust covariance matrices. The results do not change increasing the number of boot-
strap draws or using homoskedasticity-based covariance matrices. Moreover, we performed the same tests
employing the recursive design block bootstrap of Briiggemann et al. (2016), obtaining similar results.
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IV.B Macroeconomic impact of economic shocks

We identify the shocks as detailed in Table 1 utilizing sign, magnitude, and narrative re-
strictions.'® The identification of supply shocks is achieved by leaving the responses of the
professional forecasters’ 2-year inflation expectations, headline HICP, and real GDP unre-
stricted. Consequently, their IRFs provide significant insights. The results for the sectoral
variables are discussed in Section IV.D.

The IRFs of the linear model are presented in Panel A of Figure 2. Each subplot features
the median IRFs (solid blue line) and the corresponding 68% posterior pointwise credible
intervals.

The results indicate that both supply chain disruption shocks and retail energy supply
shocks act as cost-push shocks, albeit with markedly different transmission mechanisms.
The 2-year inflation expectations of professional forecasters and the headline HICP rise a few
months after adverse supply chain disruption shocks, with the effects being highly persistent,
as noted by De Santis (2024). Similarly, Finck and Tillmann (2022) observe that consumer
prices increase following a global supply chain shock. In contrast, Aastveit et al. (2024) report
that the peak impact on both inflation and inflation expectations occurs approximately two
years after the onset of a global supply chain shock. Specifically, the economic significance of
these shocks on the professional forecasters’ 2-year inflation expectations and headline prices
becomes apparent after few months, intensifying over time and peaking around 18 and 24
months, respectively. In contrast, the effects of energy supply shocks on headline inflation is
transitory. A one-standard deviation energy supply shock results in an immediate increase of
1.1% in energy prices and 0.1% in HICP, aligning with the 10% weighting of energy goods in
the consumer basket. The response of retail energy prices peaks quickly, which is consistent
with the findings of Kénzig (2021) regarding real oil prices. However, the decline in energy
prices following this peak is gradual. The impact on headline HICP is notably persistent
and enduring, again similar to the findings by Kénzig (2021) on US consumer prices.

As for real economic activity, real GDP declines following both shocks disrupting sup-

ply chains and energy markets. Notably, the short-term impact on real GDP is slightly

>The acceptance rate for the share of rotations that meet the imposed restrictions is 0.3% in the linear
model. In contrast, it is 7.4% in the nonlinear model conditioned on a low economic growth regime and 1.4%
in the nonlinear model conditioned on a high economic growth regime.
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more pronounced following a supply chain disruption shock with a rebound after about six
months, which occurs as supply chain disruptions alleviate (see the dynamics of the supply
delivery times in Figure (4)). Conversely, the medium-term effects on economic activity are
more significant after a retail energy supply shock, as energy prices return to the pre-shock
equilibrium gradually after about 2 years (see the dynamics of energy prices in Figure (4)).

The state-dependent IRF's of the nonlinear model are displayed in Panel B of Figure 2.
The responses to various shocks are contingent upon the prevailing macroeconomic state. For
this analysis, supply chain disruption shocks are normalized by assuming a 10-point decline
in suppliers’ delivery times in both states. In the high-growth regime, the expected and
headline inflation trajectories mirror those of the linear model, while the credible set for real
GDP includes zero, indicating no significant impact. Conversely, in the low-growth regime,
the impact on expected and headline inflation is more subdued, and real GDP experiences
a decline. These findings support the view that when the economy is underperforming
(below the median), supply chain disruption shocks have a significantly negative impact on
output. Conversely, when the economy is expanding (above the median) and the supply
of intermediate inputs, labor, and capital is already constrained, such disruptions lead to a
sharper increase in prices. In a low-growth regime, real GDP rebounds after a few months,
suggesting a convex relationship between supply chain disruption shocks and activity, when
the economy is underperforming. Once disruptions are gradually resolved, pent-up demand
is satisfied.

The state-dependent IRFs following retail energy supply shocks are also intuitive. These
shocks are normalized by assuming that they increase energy prices by 10%. They result in
a positive, albeit temporary, impact on expected and headline inflation. However, they have
a negative impact on economic activity only when the economy is underperforming (below
the median).

Finally, demand shocks, which are normalized by assuming a 1% increase in headline
HICP, appear to have a more pronounced effect on headline HICP in the medium term
in the high growth regime, while expected inflation seems no much affected by temporary
demand shocks. On average, positive demand shocks seem to have a larger effect only at

impact on real GDP when the economy is underperforming.
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IV.C Supply and demand shocks

The three identified shocks are depicted in Figure 3, with the linear model results on the
left and the nonlinear model results on the right. Demand shocks were significantly nega-
tive, reaching two standard deviations (in absolute values), during the initial impact of the
COVID-19 pandemic in March 2020 and five standard deviation in April 2020. Similarly,
supply chain disruption shocks were highly adverse during this period, amounting to about
one standard deviation in March 2024 and six standard deviations in April 2020. In con-
trast, energy supply shocks played a smaller role during this time-frame, about one standard
deviation in March 2020 and two standard deviations in April 2020. Throughout 2021 and
2022, the economy continued to experience multiple adverse supply chain disruption shocks
of smaller magnitude. Energy supply shocks began to emerge as a crucial factor influencing
the macroeconomy after the summer of 2021, coinciding with gas rationing from Russia. This
trend was further exacerbated following the invasion of Ukraine in February 2022, when the
energy supply shock reached four standard deviations.

The features described are common to the shocks identified by both the linear and non-
linear specifications, which are broadly similar yet distinct. This similarity can be explained
by the fact that a linear specification offers a weighted average of the dynamic relationships
between variables in the two regimes (see, for example, the related discussion in Kolesar and
Plagborg-Mgller (2024)). The weights are always positive and depend on the distribution of
the observables. Consequently, the linear specification, which applies the same identification
assumptions, generally provides good estimates of the structural shocks, especially during
periods when such shocks are substantial. However, this does not imply that the nonlinear-
ities suggested by the data are unimportant. In fact, in many cases, the shocks indicated by
the two models differ significantly, as demonstrated in Figure 3.

Table 2 provides a comprehensive summary of one additional finding of the paper, specif-
ically examining whether the magnitude of shocks has changed over time following the out-

break of the pandemic. The regression equation used is specified as follows:

abs(e;) = o+ Bao20D2020,t + Ba021 D021+ + Boo22Do022t + B2o23 D023t + 2024 D2024, + Vi,
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where abs(e;) represents the absolute value of the shocks, Dyeq+ are time dummies charac-
terized by monthly observations taking a value of 1 for the specific month of the year and 0
otherwise, and v; denotes the OLS errors. Therefore, the regression effectively compares the
average size of shocks during the five pandemic and post-pandemic years with the overall
average size from the pre-pandemic period. It employs monthly observations, with estimates
representing the monthly average value for each corresponding year to aid interpretation
and minimize volatility. The combination of monthly time series data and the randomness
in determining the absolute value of the shocks accounts for the relatively low adjusted R-
squared in the regression. Nonetheless, our primary focus is on identifying the mean shift
through this analysis. Table 2 reveals significant differences in the size of the three identified
shocks between the past five years and the rest of the sample, as indicated by some large
t-statistics.

The intercept « calculates the average size of the monthly shocks over the sample period
from 1999 to 2019, prior to the pandemic. This intercept is approximately equal to half a
standard deviation for each of the two types of supply shocks and one third of a standard
deviation for the demand shock. The monthly average coefficients for individual years (/3;)
measure the additional monthly impact in each corresponding year relative to the average
size, Q.

The shocks in 2020 were extraordinarily large. On average, monthly supply chain dis-
ruption shocks were 1.14 standard deviations in the SVAR and 0.92 in the TVAR. Similarly,
monthly demand shocks averaged 1.00 standard deviations in the SVAR and 0.80 in the
TVAR, while monthly energy supply shocks averaged 0.64 standard deviations in the SVAR
and 0.84 in the TVAR. By 2021, the magnitude of shocks returned to levels similar to those
observed in the pre-pandemic period. However, in 2022, energy supply shocks became pre-
dominant, averaging 1.68 standard deviations per month in the SVAR and 1.27 in the TVAR.
This increase in energy supply shocks can be attributed to the tensions between Russia and
Ukraine and the ensuing conflict.

As robustness check, we conducted a similar analysis, incorporating two dummy variables
so that we have more observations during each period: one for the period before June 2021

and another for after June 2021. Prior to this date, supply shocks were predominantly
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Table 2: The Size of the Shocks after the Covid-19

Supply chain
disruption Energy Demand

Panel A: SVAR Coef t-Stat ‘ Coef t-Stat ‘ Coef  t-Stat
Intercept 0.497  (15.924) 0.517 (17.572) 0.327 (12.743)
2020 0.639  (4.413) 0.121  (0.890) 0.672  (5.650)
2021 0.195  (1.344) 0.091  (0.663) 0.055  (0.459)
2022 0.147  (1.015) 1.160  (8.493) 0.311  (2.610)
2023 0.257  (1.778) 0.033  (0.242) 0.173  (1.451)
2024 0.426  (2.105) -0.238  (-1.246) 0.148  (0.892)
Adj. R-squared 0.069 | 0.189 | 0.102

Panel B: TVAR Coef t-Stat Coef t-Stat Coef t-Stat
Intercept 0.489 (17.439) 0.501  (16.093) 0.407 (16.979)
2020 0.435  (3.347) 0.336  (2.333) 0.398  (3.586)
2021 0.052  (0.398) 0.146  (1.012) -0.130  (-1.167)
2022 -0.001  (-0.004) 0.765  (5.302) 0.158  (1.427)
2023 0.071  (0.548) 0.255  (1.766) 0.323  (2.910)
2024 0.368  (2.023) -0.024  (-0.119) 0.313  (2.018)
Adj. R-squared 0.033 | 0.091 | 0.069

Panel C: SVAR Coef t-Stat ‘ Coef t-Stat ‘ Coef  t-Stat
Intercept 0.497 (15.910) 0.517 (16.212) 0.327  (12.560)
2020M1-2021M6  0.519  (4.337) 0.133  (1.084) 0.459  (4.599)
2021M7-2024M6  0.224  (2.562) 0.362  (4.056) 0.199  (2.728)
Adj. R-squared 0.067 | 0.048 | 0.076

Panel D: TVAR Coef t-Stat ‘ Coef  t-Stat ‘ Coef  t-Stat
Intercept 0.489  (17.421) 0.501  (15.789) 0.407  (16.659)
2020M1-2021M6  0.359  (3.337) 0.294  (2.419) 0.220  (2.359)
2021M7-2024M6  0.068  (0.864) 0.350  (3.943) 0.192  (2.811)
Adj. R-squared 0.031 | 0.056 | 0.033

associated with supply chain issues, as indicated in Panel C. Conversely, supply shocks
occurred after June 2021 were mainly related to energy concerns as indicated in Panel D.
Qualitatively, the results from both the linear and nonlinear models are similar. However,
when the model is estimated while conditioning on economic activity, the shocks appear
somewhat smaller compared to the pre-pandemic period (see Panel B of Table 2). This
discrepancy occurs because the SVAR attributes part of the observed dynamics, which cannot
be explained by a linear model, to structural shocks. In contrast, the TVAR captures these

dynamics as nonlinear relationships, resulting in a more accurate fit.

Overall, the post-pandemic shocks have been consistently larger than those recorded in
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previous periods, but they are gradually decreasing in size over time. This trend suggests
that the economy in 2023 and 2024 has been slowly returning to pre-pandemic equilibrium

levels.

IV.D Sectoral Impact

The impact on sectors is illustrated in Figure 4. Both adverse supply shocks lead to an
increase in vehicle and energy prices. However, the nature of the shocks affects the sectors
differently. A supply chain disruption shock causes a decline in vehicle output and has
a marginal negative impact on the output of the energy and energy-intensive sectors. In
contrast, an energy supply shock results in a significant drop in all three sectors, with the
impact being temporary for the automotive sector but persistent for the energy and energy-
intensive sectors. These results are line with the findings of Lee and Ni (2002), who found
that oil price shocks decrease the supply in oil-intensive industries and the demand across
various sectors, notably the automobile industry; and of Edelstein and Kilian (2009b), who
observed a decline in demand for automotive goods following energy shocks.

It is important to note that suppliers’ delivery times are influenced by both demand and
supply forces. First, demand shocks have a strong negative impact on vehicle output and
extend suppliers’ delivery times, with this lengthening of the supply chain lasting approxi-
mately nine months. Subsequently, the dynamics fully mean-revert, with a peak shortening
of delivery times occurring after 16 months. Suppliers’ delivery times for vehicle output
return to their equilibrium level after about two and a half years. Second, supply chain
disruption shocks also extend the delivery time for materials and equipment, with this delay
lasting around 12 months. The dynamics then mean-revert, with the peak shortening of
delivery times occurring after 24 months. Suppliers’ delivery times for vehicle output return
to their pre-shock equilibrium after approximately five years.

Interestingly, energy supply shocks are associated with a shortening of the supply chain,
possibly because firms strive to enhance production efficiency to offset the rise in energy
costs.

Demand shocks also tend to increase the production of vehicles and energy-intensive

sectors, which are left unrestricted at impact.
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The results of the nonlinear model align closely with those of the linear model for nominal
variables in a high-growth regime and for real variables in a low-growth regime. In other
words, adverse supply shocks have a more pronounced negative impact on real variables
when the macroeconomic conditions are already weak. Conversely, these shocks lead to a
sharper increase in prices when macroeconomic conditions are strong and favorable. Similar

conclusions can be derived from analyzing demand shocks.

IV.E Robustness checks

IV.E.1 Using industrial production

The key finding that supply chain disruption and retail energy supply shocks act as cost-push
shocks with distinct transmission mechanisms remains coherent when industrial production
(excl. construction) is used as a measure of output instead of real GDP (see Figure 5).
The impact of supply chain disruptions shocks on expected inflation and headline HICP is
particularly persistent in the high industrial production growth regime. In the low growth
regime, these disruptions lead to short-term declines in industrial production. In the high
growth regime, the credible set for industrial production includes zero, similar to the baseline
scenario. Similarly, energy supply shocks have a transitory effect on expected inflation and
headline HICP. They negatively impact aggregate industrial production in both regimes,

whereas real GDP appears to be most affected in the low-growth regime.

IV.E.2 The narrative restrictions on the demand shocks

In the appendix, we consider other narrative restrictions that might have affected demand.
The success of the vaccination programme against Covid-19 allowed governments to lift the
restrictions from March 2021. In Germany, for example, hairdressers were allowed to reopen
from March 1, 2021. Subsequently, Germany announced the reopening to tourists on June
15th. In March and June 2021, euro area monthly real GDP growth is estimated to have
risen by 2.5% and 2.1% month-on-month, respectively.!6 Finally, we assume that the demand

shocks were positive in May 2022, as output rose strongly in that month, despite the war in

16In March and June 2021, retail sales rose by 3.9% and 2.5% month-on-month, and service production
rose by 3.5% and 3.7%respectively, mainly due to higher demand for high contact-intensive services, such as
hotels, restaurant, arts, entertainment and transport.
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Ukraine. Most of the unexpectedly robust growth was due to strong activity in the services
sector following the lifting of most pandemic-related restrictions (see ECB, 2022). In the
Appendix, we assume that all demand shocks in these three months are positive and show

that the results are robust to such assumptions (see Figures A2 and A3 of the Appendix).

V Conclusions

The COVID-19 pandemic and Russia’s invasion of Ukraine have significantly altered the
favorable conditions of the Great Moderation, due to unprecedented supply chain and en-
ergy shocks. This study assesses whether a structural break occurred in March 2020 and
whether these shocks have increased in size and frequency post-COVID-19, suggesting a new
macroeconomic regime. Finally, we examine their impact on inflation and GDP using linear
(SVAR) and nonlinear (TVAR) models.

The statistical tests cannot reject the null hypothesis of no structural break. Moreover,
the findings reveal that supply chain disruption shocks, retail energy supply shocks and de-
mand shocks were initially elevated, but they have been gradually returning to pre-pandemic
levels.

Supply chain disruption and retail energy supply shocks act as cost-push shocks with
distinct transmission mechanisms. Supply chain disruptions lead to persistent increases in
inflation expectations and headline HICP, peaking around 18 to 24 months, and cause short-
term GDP declines. In contrast, energy supply shocks have a transitory effect on inflation
and a pronounced medium-term impact on GDP. The nonlinear model shows that the effects
of these shocks vary with economic conditions, being more significant on prices during high
GDP growth periods and on real economic activity during low GDP growth periods.

Shocks are identified across three sectors: automotive, energy, and energy-intensive in-
dustries. Sectoral analysis indicates that adverse supply shocks exert a more pronounced
negative impact on real variables when macroeconomic conditions are already weak. Con-
versely, these shocks lead to a sharper increase in prices when macroeconomic conditions are
strong and favorable. Similar conclusions can be drawn from the analysis of demand shocks.

The study’s findings have important implications for policymaking. The distinct trans-
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mission mechanisms of supply chain and energy shocks necessitate tailored policy responses.
The persistence of supply chain disruptions in driving inflation and their short-term impact
on GDP highlight the need for policies that enhance supply chain resilience. In contrast, the
transitory nature of energy supply shocks on inflation but their pronounced medium-term
GDP impact calls for policies that stabilize energy markets and diversify energy sources.
An alternative approach to our analysis could involve identifying shocks both within and
between the proposed macro, energy, and automotive blocks. However, undertaking such
an analysis would require a significantly more structured model. Specifically, accurately
capturing the structural relationships between these blocks would involve identifying both
demand and supply shocks unique to each sector, thereby imposing additional constraints on
the estimated model. We acknowledge the potential value of this approach and will explore

how these questions can be addressed in future research endeavors.
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Tables and Figures

Figure 1: Real GDP Growth: Underlying Rate and 12-month Moving Average
(annualised and %)
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Figure 2: Macro Impact of Supply and Demand Shocks
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Panel B: TVAR
Supply chain disruption shocks (normalization: 10 points decline in the suppliers’ delivery times):
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Notes: Each panel shows the median IRFs and the corresponding posterior 68% credible sets. The red (blue) lines
of the TVAR model are associated to the high (low) growth regime. The VAR and the TVAR contain nine variables,
x¢ = [7§,pt, DY, %, ye, yY, Y, yi, s¥]’: the SPF 2-year inflation expectations, headline HICP, the vehicle producer price, the
energy price, real GDP, the vehicle production, energy production, the output of the energy-intensive sector and the suppliers’
delivery times of the vehicle sector. All variables, except the SPF 2-year inflation expectations and the suppliers’ delivery times
of the vehicle sector, are defined in logs. The identifying assumptions are collected in Table 1.
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Figure 3: Estimated Supply Chain Disruption, Energy Supply, and Demand Shocks
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Notes: The figure shows the posterior median of the identified supply chain disruption shocks, retail energy supply
shocks, and demand shocks. The structural shocks are estimated using a linear VAR containing nine variables, x; =
7§, pt, PY DS Yt Uy s y,f, s¥]’: the SPF 2-year inflation expectations, headline HICP, the vehicle producer price, the energy
price, real GDP, the vehicle production, energy production, the output of the energy-intensive sector, and the suppliers’ delivery
times of the vehicle sector. All variables, except the SPF 2-year inflation expectations and the suppliers’ delivery times of the
vehicle sector, are defined in logs. The identifying assumptions are collected in Table 1.
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Figure 4: Sectoral Impact of Supply and Demand Shocks

Panel A: SVAR
Supply chain disruption shocks (response to 1 st. dev. shock):
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Panel B: TVAR
Supply chain disruption shocks (normalization: 10 points decline in the suppliers’ delivery times):
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Notes: Each panel displays the median Impulse Response Functions (IRFs) along with their corresponding posterior 68% credible
intervals. The red lines in the TVAR model represent the high growth regime, while the blue lines correspond to the low growth
regime. Both the VAR and TVAR models incorporate nine variables, denoted as mathbfz: = pif,pt,p};,pf,yt,yf,yf,yi, sy’
these include the SPF 2-year inflation expectations, headline HICP, vehicle producer price, energy price, real GDP, vehicle
output, energy output, output of the energy-intensive sector, and suppliers’ delivery times in the vehicle sector. All variables,
except the SPF 2-year inflation expectations and suppliers’ delivery times in the vehicle sector, are expressed in logarithms.

The identifying assumptions are detailed in Table 1.
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Figure 5: Macro Impact of Shocks: SVAR versus TVAR using Industrial Production

Panel A: SVAR
Supply chain disruption shocks (response to 1 st. dev. shock):
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Panel B: TVAR
Supply chain disruption shocks (normalization: 10 points decline in the suppliers’ delivery times):
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Energy supply shocks (normalization: 10% increase in energy prices):
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Demand shocks (normalization: 1% increase in HICP):
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Notes: Each panel shows the median IRFs and the corresponding posterior 68% credible sets. The red (blue) lines
of the TVAR model are associated to the high (low) growth regime. The VAR and the TVAR contain nine variables,
Xt = [ﬂf,pt,pf,pf,y:p,yf,yf,yé,sf}’: the SPF 2-year inflation expectations, headline HICP, the vehicle producer price, the
energy price, industrial production (excl. construction), the vehicle production, energy production, the output of the energy-
intensive sector and the suppliers’ delivery times of the vehicle sector. All variables, except the SPF 2-year inflation expectations
and the suppliers’ delivery times of the vehicle sector, are defined in logs. The identifying assumptions are collected in Table 1.
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Appendix

A Data

We provide in this section information on key variables used to identify the supply shocks

(see Figure Al).

A.A Supply chains and energy prices

The suppliers’ delivery times index from Standard and Poor’s (S&P) global (previously THS
Markit’s) Purchasing Manager Index (PMI) business surveys captures the extent of supply
chain delays in an economy, which in turn acts as a useful barometer of capacity constraints.'”

Purchasing managers of the vehicle sector participating in business surveys are asked if it
is taking their suppliers more or less time to provide inputs to their factories on average. The
precise question wording is: 7 Are your suppliers’ delivery times slower, faster or unchanged
on average than one month ago?” The percentage of companies reporting an improvement,
deterioration or no change in delivery times are weighted to derive a ’diffusion index’ as
follows: o + /2, where o and [ are the percentages of survey panel responding "Faster’ and
'Same’; respectively. Hence readings of 50 indicate no change in delivery times on the prior
month, readings above 50 indicate that delivery times have improved (become shorter, or
faster) and readings below 50 indicate that delivery times have deteriorated (become longer,
or slower).!8

In each euro area country, the panel of companies is carefully selected to accurately
represent the true structure of the chosen sector of the economy as determined by official
data. A weighting system is also incorporated into the survey database that weights each
response according to the workforce size.

The lengthening of the motor vehicle suppliers’ delivery times in March and April 2020,

1"The aggregate manufacturing suppliers’ delivery times index became widely watched in the 1990s by
high-profile users such as US Fed Chair Alan Greenspan, who cited the index (produced at the time by
the NAPM - now known as the ISM) as his preferred leading indicator of inflation. According to the Wall
Street Journal of 6 April 1996, ”Mr Greenspan, speaking in congressional testimony, said that suppliers’
deliveries are ”far more relevant than the Fed’s own capacity utilization figures at gauging price pressures in
the economy”.

18The index is seasonally adjusted to strip out normal variations in delivery performance for the time of
year.
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its shortening in May 2020 and its lengthening again since the autumn 2020 is noticeable.
Vehicle production moved in tandem with the suppliers’ delivery times dropping after the
pandemic restrictions, recovering immediately, but then dropping again in the autumn 2020.
Vehicle prices started to rise sharply since the end of 2020. This suggests that supply chain

disruption shocks played a key role in this period.

A.B Energy prices

Energy supply shocks are typically studied through the global crude oil market!® However,
the prices of other sources of energy, are only weakly correlated with oil prices. According
to monthly data provided by the U.S. Energy Information Administration (EIA), available
for a long period between January 1997 and December 2019, the correlation between the
Henry Hub natural gas spot price and the West Texas Intermediate (WTI) spot price is
20%. Gas and renewable sources like wind, solar, geothermal and hydropower have become
important alternative sources in the last two decades for energy supplies’ security motives
and for environmental issues. Therefore, we employ the HICP category ”Energy (ENRGY)”
for goods and services, rather than oil prices to identify energy shocks. The retail energy
price includes electricity, gas, liquid fuels, solid fuels, heat energy, and fuels and lubricants
for personal transport equipment.

The remarkable drop in energy-intensive output together with the surge in energy prices
since the autumn 2021 suggest that energy supply shocks might have played a key role in
the dynamics of the business cycle since then. The energy-intensive sector is defined by
aggregating the production of chemicals, chemical products and basic metals, as they are by
far the largest-scale users of energy (e.g. EIA, 2021; Gunnella et al., 2022). We use time-
varying weights provided by Eurostat to construct the index. These sub-sectors account on

average for about 10% of euro area industrial production

19 Among others, see Kilian (2009); Baumeister and Peersman (2013); Kilian and Murphy (2014); Aastveit
et al. (2015); Baumeister and Kilian (2016); Baumeister and Hamilton (2019); Caldara et al. (2019); Kénzig
(2021); Aastveit et al. (2021); Kilian and Zhou (2022b).
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Figure Al: Dataset
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Notes: The models contain nine variables, x; = [, p¢, pY, b5, ye, Y7, ¥§, yi, s¥])’: the SPF 2-year inflation expectations, headline
HICP, the vehicle producer price, the energy price, real GDP, the vehicle production, energy production, the output of the
energy-intensive sector and the suppliers’ delivery times of the vehicle sector. The SPF 2-year inflation expectations is in
percentage points, and the suppliers’ delivery times of the vehicle sector is in net percent balances. All other variables are

defined in logs multiplied by 100.
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B Posterior Sampler for the Structural TVAR Model

Since the state variable, z;_1, and its threshold value, z*, are pre-specified, the Monte Carlo
sampler used to draw from the posterior of the structural TVAR parameters is just the
same as the one employed for the linear model, but applied to one regime at a time. More
specifically, conditionally on z;_; and z*, the sample can be split in two sub-samples, whose
observations can be denoted X7, with S € (Low, High) and t = 1,...,Ts, Ts being the
number of observations in regime S. Given Natural-Conjugate Normal-Inverse Wishart
priors on the reduced form parameters (p(vec(Ily), Qg) = p(Qs)p(vec(Ill)|S2s), with p(Q2s)
being Inverse Wishart with v degrees of freedom and scale @ and p(Ilg|Q2s) being Gaussian
with mean vec(Il) and variance Q® V'), and uniform Haar prior on the space of orthonormal
rotation matrices, @), that map the lower triangular Cholesky factor of Qg, chol(€2gs), into a
candidate By é, the posterior of the structural parameters associated with regime S can be

explored via a direct Monte Carlo sampler that runs through the following steps:

1. Draw €, from IW(7,®);

2. Draw vec(II%) from N(vec(Il),Q2 @ V);

3. Draw candidates B & = chol(Qs)Q using the algorithm described by Rubio-Ramirez

et al. (2010) and retain a draw (if any) that satisfy the desired restrictions;

where 7 = v+ Ts, ® = ©+37,% XF(XP)+ IV I-IV LV = (V74302 X (XE,))

and T = V (V1L + Y00, X5 (X5)).
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C Additional Robustness Checks

The restrictions imposed on shocks are summarized in Table A1l. Relative to Table 1, we

assume that demand shocks were positive in March 2021, June 2021 and May 2022.

Table A1: Sign, magnitude and narrative restrictions including 2021/2022 demand Narratives

Supply chain disruption Energy supply Demand

Variables Panel A: Sign restrictions on the impact matrix BO_1

Expected inflation 2-year ahead

Headline HICP +
Real GDP +
Vehicle prices +
Vehicle output -
Vehicle suppliers’ delivery times - -
Energy prices + +

Energy output
Energy-intensive output

Variables Panel B: Magnitude restrictions on the FEVD at h =0
Vehicle suppliers’ delivery times ++ +
Energy HICP + ++

Dates Panel C: Narrative sign restrictions

03/20 - 04/20 + -
05/20 - +
10/21 - 11/21 +

03/22 +

03/21 +
06/21 +
05/22 +
Dates Panel D: Sign contribution restrictions

04/20 (low growth) FEs¢

03/21 (high growth) FEs¢

01/03 (low growth) FEP?

03/22 (high growth) FEP?
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Figure A2: Macro Impact of Supply and Demand Shocks: SVAR versus TVAR including
2021/2022 Demand Narratives
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Panel B: TVAR
Supply chain disruption shocks (normalization: 10 points decline in the suppliers’ delivery times):
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Energy supply shocks (normalization: 10% increase in energy prices):
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Notes: Each panel shows the median IRFs and the corresponding posterior 68% credible sets. The red (blue) lines
of the TVAR model are associated to the high (low) growth regime. The VAR and the TVAR contain nine variables,
Xt = [ﬂf,pt,p;’,pf,yt,yf,yte,yi,sf]’: the SPF 2-year inflation expectations, headline HICP, the vehicle producer price, the
energy price, real GDP, the vehicle production, energy production, the output of the energy-intensive sector and the suppliers’
delivery times of the vehicle sector. All variables, except the SPF 2-year inflation expectations and the suppliers’ delivery times
of the vehicle sector, are defined in logs. The identifying assumptions are collected in Table Al.
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Figure A3: Sectoral Impact of Supply and Demand Shocks: SVAR versus TVAR including
2021/2022 Demand Narratives
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Panel B: TVAR
Supply chain disruption shocks (normalization: 10 points decline in the suppliers’ delivery times):
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Energy supply shocks (normalization: 10% increase in energy prices):
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Demand shocks (normalization: 10% increase in real GDP):
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Notes: Each panel displays the median Impulse Response Functions (IRFs) along with their corresponding posterior 68% credible
intervals. The red lines in the TVAR model represent the high growth regime, while the blue lines correspond to the low growth
regime. Both the VAR and TVAR models incorporate nine variables, denoted as mathbfxz; = pif,pt,p%’,pf,yt,yf,yf,yi, sy
these include the SPF 2-year inflation expectations, headline HICP, vehicle producer price, energy price, real GDP, vehicle
output, energy output, output of the energy-intensive sector, and suppliers’ delivery times in the vehicle sector. All variables,
except the SPF 2-year inflation expectations and suppliers’ delivery times in the vehicle sector, are expressed in logarithms.
The identifying assumptions are detailed in Table A1l
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