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Abstract

We derive forecast weights and uncertainty measures for assessing the role of individual series

in a dynamic factor model (DFM) to forecast euro area GDP from monthly indicators. The use

of the Kalman filter allows us to deal with publication lags when calculating the above measures.

We find that surveys and financial data contain important information beyond the monthly real

activity measures for the GDP forecasts. However, this is discovered only, if their more timely

publication is properly taken into account. Differences in publication lags play a very important

role and should be considered in forecast evaluation.

Keywords: dynamic factor models, forecasting, filter weights

JEL classification: E37, C53
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Non-technical summary 

 

The first estimate of euro area quarterly GDP growth is released about six weeks after 
the end of the quarter. To assess macro-economic conditions, market participants 
meanwhile rely on data of higher frequency, among them financial series, surveys, 
and monthly data on real economic activity (e.g. industrial production and retail 
sales). The former two categories are often labelled as 'soft' data, as opposed to the 
'hard' indicators on real activity that directly measure certain components of GDP. 
The soft data are promptly available, while most real activity data are published with 
a lag of about six weeks after the end of the respective month. Overall, the large 
number of the available indicators and their different release dates make the efficient 
use of the information contained in the various indicators a difficult task. 

Dynamic factor models (DFMs) have emerged as an interesting alternative for the 
short-term forecasting of GDP growth from a large number of monthly indicators. 
The information contained in the latter is summarised in a few latent factors, which 
are then used to forecast GDP growth. Moreover, recent DFM versions handle 
differences in publication lags among series in an efficient way. Studies report a good 
forecasting performance of dynamic factor models relative to other methods. 

One weakness of DMFs is a lack of diagnostic statistics on the role of the individual 
series in the model. In this paper, we propose two statistics. First, we derive the 
weights of the individual monthly indicators in the forecast. They can be used to 
conduct contribution analysis. Second, we assess the gains in forecast precision from 
certain series by inspecting the increase in forecast uncertainty once the series are 
removed from the data set. These statistics account for differences in publication lags. 

We use these measures to investigate the role of real activity, survey and financial 
data in forecasting euro area GDP growth from a set of 76 monthly series. Studies in 
general report that soft data contain little information beyond the real activity data, but 
these studies mostly use quarterly data and ignore the differences in publication lags.  

We find that the differences in publication lags have important effects on the 
contributions of hard and soft data to the forecasts. When ignoring differences in 
publication lags, we find - in line with other studies - that real activity data (notably 
industrial production) are the most important source of information. However, once 
their less timely publication is taken into account, the real activity data become much 
less relevant, while business surveys take their place. Similarly, financial data gain 
importance in the latter case. It is only the very late GDP “forecasts”, conducted in the 
final month of the respective quarter and thereafter, for which industrial production 
data still contain additional information. 
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1 Introduction

The first estimate of euro area quarterly GDP is released about six weeks after the end of the

quarter. To assess macro-economic conditions, forecasters meanwhile rely on data of higher frequency,

among them financial series, surveys, and monthly data on real economic activity (e.g. industrial

production). The former two categories reflect market expectations and are often labelled as ‘soft’

data, as opposed to the ‘hard’ indicators on real activity that directly measure certain components of

GDP. The soft data are promptly available, while real activity data are published with a significant

delay. Overall, the large number of the available indicators and their different release dates, which

result in unbalanced data sets, make the efficient use of the information contained in the various

indicators a difficult task. Put differently, it is not straightforward to attach appropriate weights to

the individual indicators when producing a GDP forecast.

Factor models have emerged as an interesting alternative for the short-term forecasting of real activity,

as they can be applied to large data sets. In relating the individual indicators to a few latent factors,

weights are implicitly attached to the former in a parsimonious way (e.g. Stock and Watson, 2002;

Forni et al., 2003; Breitung and Schumacher, 2006; Altissimo et al. 2007). However, the explicit

calculation of these weights, although straightforward for a static model and complete data, faces

difficulties in a fully dynamic context with unbalanced data sets.

The lack of diagnostic statistics on the role of the individual series in the model forecasts is a general

criticism of factor models. In this paper, we address this issue in the context of a dynamic factor

model to forecast GDP from monthly indicators. We aim at developing measures for understanding

the importance of individual series in forecasts from a dynamic factor model. First, we derive the

weights of the series in the forecast and use them to calculate their contributions to the forecasts.

Second, we assess the gains in forecast precision from certain series by inspecting the increase in

forecast uncertainty once the series are removed from the data set.

Our approach allows us to assess the evolution of the forecast weights and forecast precision measures

in a dynamic context with mixed data frequencies and unbalanced data sets. We use a factor model

version based on Doz et al. (2005) and Giannone et al. (2005), which implements the common factors

as unobserved components in a state space form. Factor dynamics is therefore modelled explicitly.

We further integrate the monthly factor model and a forecast equation for quarterly GDP in a

6
ECB 
Working Paper Series No 751 
May 2007



single state space representation, using a mixed frequency set-up. Based on the latter, the desired

statistics are provided by the Kalman filter and smoother algorithms. In particular, the Kalman

filter provides efficient forecasts also in case that past observations contain missing data points. As

shown by Giannone et al. (2005) this feature makes the model perfectly suited for dealing with

those unbalanced data sets that arise from the staggered timing of data releases of the individual

indicators.1

In the empirical part of the paper, we use these measures to investigate the role of real activity,

survey and financial data in forecasting euro area GDP. Similar to Altissimo et al. (2007), we use

a pseudo real-time forecast design to replicate the information sets that are available in each month

within the quarter. We then obtain a sequence of GDP forecasts from data vintages as from the

individual months of the preceding, current and subsequent quarters.

Studies in general report that soft data contain little information beyond the real activity data, but

they mostly use quarterly data or ignore publication lags (e.g. Rünstler and Sédillot, 2003; Forni

et al., 2003; Stock and Watson, 2003; Banerjee et al., 2005). Exceptions to this rule are the studies

by Giannone et al. (2005) and Hansson et al. (2005). Giannone et al. (2005) use a model-based

uncertainty measure to assess the news content of data vintages that arrive within the month. They

find the largest declines in uncertainty after the releases of surveys and financial data. Hansson et

al. (2005) report that the inclusion of summary measures of survey data into VAR models improves

out-of-sample forecasts, but they use a small data set and only quarterly data.

Our application shows that the inspection of forecast weights and model-based uncertainty measures

can be very informative and provide insight into the model properties that can hardly be obtained

from forecast errors. We find, for instance, that forecast weights are concentrated among a relatively

small set of series and that they show substantial variation across different horizons. Most impor-

tantly, differences in publication lags have large effects on the contributions of hard and soft data

to the forecasts. For a counterfactual balanced data set, we find - in line with other studies - that

real activity data are the most important source of information. However, once their less timely

publication is taken into account, the real activity data become much less relevant, while surveys

take their place. Similarly, financial data gain importance in the latter case.

Generally, our measures may be of use to practitioners in understanding the properties of the factor

1We denote a data set as ’unbalanced’ if the final observations of the individual series occur at different dates.
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model forecasts. In practice, forecasts from a single model are hardly ever used in isolation, but

compared against other models and further anecdotal information. In addition, forecasters want to

understand the reasons for differences in forecasts from different models and the sources of forecast

revisions after new data releases. Both can be achieved from contribution analysis. Another potential

use of our measures is model diagnostics. Bai and Ng (2006) and Boivin and Ng (2006) have suggested

that forecast accuracy does not necessarily increase with the number of series and propose methods

to select a limited set of series from data panels. Our measures may be helpful when it comes to

adapting these methods to a dynamic context.

The remainder of the paper is structured as follows. Section 2 presents the dynamic factor model

and its state space representation, while section 3 discusses the calculation of forecast weights and

uncertainty. Section 4 uses these measures to investigate the role of real activity, survey and financial

data in forecasting euro area GDP. Section 5 concludes the paper.

2 The model

Dynamic factor models (DFMs) are designed to explain the dynamics in a panel of series by a few

common sources of variation. Consider a vector of n stationary monthly series xt = (x1,t, . . . , xn,t)0,

t = 1, . . . , T , which have been standardised to mean zero and variance one. The DFM by Doz et al.

(2005) is given by the equations

xt = Λft + ξt, ξt ∼ N(0,Σξ), (1)

ft =

pX
i=1

Aift−i + ζt, (2)

ζt = Bηt, ηt ∼ N(0, Iq).

From a matrix of factor loadings Λ, equation (1) relates the monthly series xt to a r × 1 vector of

latent factors ft = (f1,t, . . . , fr,t)0 plus an idiosyncratic component ξt = (ξ1,t, . . . , ξn,t)
0. The latter is

assumed to be multivariate white noise with diagonal covariance matrix Σξ. Equation (2) describes

the law of motion for the latent factors ft, which are driven by q-dimensional standardised white

noise ηt, where B is a r × q matrix, where q ≤ r. Hence ζt ∼ N(0, BB0). We assume that the

stochastic process for ft is stationary.

We extend on Doz et al. (2005) by combining the monthly factor model with a forecast equation for

mean-adjusted quarterly GDP in a mixed-frequency approach (e.g. Mariano and Murasawa, 2003).
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For this purpose, we introduce the forecast of monthly GDP growth byt as a latent variable, which is
related to the common factors by the static equation

byt = β0ft. (3)

In the 3rd month of each quarter, we evaluate the forecast for quarterly GDP growth, byQt , as the
quarterly average of the monthly series,2

byQt = 1

3
(byt + byt−1 + byt−2) (4)

and define the forecast error εQt = yQt − byQt . We assume that εQt is distributed with εQt ∼ N(0, σ2ε).

Innovations ξt, ζt, and εQt are assumed to be mutually independent at all leads and lags. This

completes the description of the model.

Equations (1) to (4) can be cast in state space form, which is illustrated below for the case of p = 1.

To deal with the mixed frequencies, we construct a series yQt at monthly frequency such that it

contains mean-adjusted quarterly GDP growth in the 3rd month of the respective quarter, whereas

the remaining observations are treated as missing. The final row of observation equation (5), related

to yQt , is defined only for the 3
rd month of the quarter and otherwise is skipped in application (see

section 3).

Aggregation rule (4) is implemented in a recursive way in equation (6), as from byQt = ΞtbyQt−1 + 1
3byt,

where Ξt = 0 for t corresponding to the 1st month of the quarter and Ξt = 1 otherwise (Harvey,

1989:309ff). As a result, expression (4) holds in the 3rd month of each quarter. The inclusion of the

GDP forecast in the state vector, α0t = (f
0
t, byt, byQt ), greatly facilitates the calculation of the various

statistics discussed below. ∙
xt
yQt

¸
=

∙
Λ 0 0
0 0 1

¸⎡⎣ ftbytbyQt
⎤⎦+ ∙ ξt

εQt

¸
(5)

⎡⎣ Ir 0 0
−β0 1 0
0 −13 1

⎤⎦⎡⎣ ft+1byt+1byQt+1
⎤⎦ =

⎡⎣ A1 0 0
0 0 0
0 0 Ξt+1

⎤⎦⎡⎣ ftbytbyQt
⎤⎦+

⎡⎣ ζt+1
0
0

⎤⎦ (6)

The estimation of the model parameters θ = (Λ, A1, . . . , Ap, β,Σξ, B, σ
2
ε) is discussed in Giannone et

al. (2005). Briefly, Λ is estimated from static principal components analysis applied to a balanced
2This aggregation rule implies that yt represents 3-month growth rates, i.e. growth rates vis-a-vis the same month

of the previous quarter. It is suggested by the fact that equivalent transformations have been applied to monthly series
xt (see Appendix A). For aggregating monthly growth rates see Mariano and Murasawa (2003).
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sub-sample of data {xs}Ts=1. This also gives sample estimates of the common factors. The latter

are used to estimate equation (2) and a quarterly version of (3) by standard regression techniques.

Matrix B is estimated from principal components analysis applied to the estimated residuals bζt.
3 Forecast weights and uncertainty with unbalanced data

In real-time application, data sets typically contain missing observations at the end of the sample due

to publications lags. Moreover, the number of missing data differs across series due to the different

timing of data releases. To obtain efficient forecasts of GDP growth yQt from such unbalanced data

sets, the Kalman filter and smoother recursions can be applied to the state space form (5) and (6).

In the recursive application of the model, we will account for publication lags by replicating the

pattern of missing data that is found at the end of the sample. Let z0t = (x
0
t, y

Q
t ) and consider a data

set ZT = {zs}Ts=1 that has been downloaded on a certain day of the month. Define with Zt = {zs}ts=1
the observations from the original data set ZT up to period t, but with observation zi,t−h, h ≥ 0,

eliminated, if observation zi,T−h is missing in ZT . That is, Zt and ZT have the same pattern of

missing data with respect to periods t and T , respectively.3

For our uncertainty measures, we will also inspect GDP forecasts based on certain subsets of in-

dicators, for instance forecasts that ignore survey or financial data. For this, we assume that all

observations of the respective series are unavailable. Formally, partition the vector of monthly se-

ries xt = (x1t
0, . . . , xjt

0, . . . , xmt
0)0 into m subvectors xjt and let x

−j
t coincide with xt but with all

observations of xjt being treated as missing.

Further, let z−jt = (x−jt
0, yQt )

0 and define data Z−jt =
n
z−js

ot
s=1
⊂ Zt. Let Z−0t = Zt.

For the state space form

zt = W (θ)αt + ut, ut ∼ N(0,Σu(θ)) (7)

αt+1 = Tt(θ)αt + vt, vt ∼ N(0,Σv(θ)),

with fixed θ and any data set Z−jt , j = 0, . . . ,m, the Kalman filter and smoother provide minimum

3Quarterly GDP growth requires a slightly different treatment, as it is published only once a quarter. For ease of
notation we abstract from that in this section. Our empirical analysis will account for it.
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mean square linear (MMSLE) estimates a−jt+h|t of the state vector and their precision, P
−j
t+h|t,

a−jt+h|t = E
h
αt+h|Z−jt

i
(8)

P−jt+h|t = E
h
a−jt+h|t − αt+h

i h
a−jt+h|t − αt+h

i0
, (9)

for h > −t. To handle missing observations, the rows in equation (7) corresponding to the missing

observations in zt are simply skipped when applying the recursions (Durbin and Koopman, 2003:92f).

We will consider two measures to investigate the role of individual series or groups of series in the

GDP forecast byQ
t+h|t based on data Zt. Because byQt is an element of the state vector, αt, these

measures can be directly obtained from the Kalman smoother output.

1. Forecast weights and contribution analysis. The weights of the individual observations in the

estimates of the state vector can be obtained from an algorithm by Harvey and Koopman

(2003). Again, weights can be calculated for an arbitrary information set with those weights

related to missing data being set to zero. This allows expressing forecasts a−jt+h|t as the weighted

sum of available observations in Z−jt ,

a−j
t+h|t =

t−1X
k=0

Ω−jk (t, h)z
−j
t−k , (10)

with weights Ω−jk (t, h). Crucially, though the weights depend both on period t and the data

set used, they are time-invariant for our definition of Z−jt . More precisely, assuming a large

enough t such that the Kalman filter has approached its steady state it holds approximately

Ω−jk (t, h) = Ω
−j
k (t+ r, h) for r > 0. Hence, let Ω−jk (h) = Ω

−j
k (t, h) for large enough t.4

For equations (5) and (6), the desired steady state weights ωk(h) for the GDP forecast based

on data Zt are obtained from the final rows of matrices Ωk(h), k = 1, . . . , t − 1, related to

element byQt+h in the state vector. From the expression

byQt+h|t = t−1X
k=0

ωk(h)zt−k , (11)

we can calculate the cumulative forecast weights
Pt−1

k=0 ωk,i(h) for series i, where ωk,i(h) is the

ith element of ωk(h), i = 1, . . . , n. The contribution of series i to the forecast is calculated asPt−1
k=0 ωk,i(h)zi,t−k.

4 Inspection of the Kalman filter recursion shows that both Ω−jk (t, h) and below matrices P−jt+h|t do not depend on
the observations. However, apart from parameters θ, they are affected by the pattern of missing observations, which
influences the Kalman gain (Durbin and Koopman, 2001:92f).
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2. Forecast uncertainty. We consider two forecast uncertainty measures to investigate the gains

in forecast precision stemming from subsets of indicators.

Giannone et al. (2005) have proposed to use filter uncertainty as a model-based uncertainty

measure. From equation (5), the variance of the forecast error for yQt+h can be decomposed into

var(byQ,−jt+h|t − yQt+h) = π−jt+h|t + σ2ε , (12)

where π−jt+h|t = var(byQ,−jt+h|t − byQ,−jt+h ) represents the effect stemming from the uncertainty in fore-

casts f−j
t+h|t of the latent factors. We denote π

−j
t+h|t as filter uncertainty, as opposed to residual

uncertainty σ2ε. For state space form (5) and (6), π−jt+h|t is obtained from the corresponding

element in P−jt+h|t.

We measure the marginal gain in forecast precision stemming from series xjt from the increase

in π−jt+h|t against πt+h|t. That is, we consider the increase in filter uncertainty π−jt+h|t from

forecasts based on data Z−jt , which exclude xjt , against πt+h|t based on the full data set Zt.

With parameters θ being estimated from data Zt in both cases, it can be shown that

π−jt+h|t = πt+h|t + var
hbyQ,−jt+h|t − byQt+h|ti . (13)

Hence, π−jt+h|t ≥ πt+h|t and filter uncertainty necessarily increases when information is with-

drawn. Again, measures π−jt+h|t are time-invariant in the sense defined above.

The model-based filter uncertainty measure ignores parameter uncertainty as it is conditional

on a fixed value of parameters θ. To examine the robustness of our conclusions against the

latter, we also run recursive forecasts from both data sets Z−jt and Zt. More precisely, for a

certain sample t = t0, . . . , T , we obtain the forecasts byQt+h|t and byQ,−jt+h|t from data Zt and Z−jt ,

respectively and compare the root mean squared errors from the two forecasts.

It should perhaps be stressed that, when evaluating either forecast uncertainty measure for data

Z−jt , we always use parameters θ as estimated from the full data Zt. In keeping θ fixed, we assess

the gains in forecast precision from series xjt for the model as it stands. For diagnostic purposes, this

has the advantage that the comparison is not blurred by potential changes to the factor structure.

Re-estimating parameters θ for subsets of series may eliminate important dimensions of the data

space and thereby change the factor loadings of the remaining series with unsystematic effects on

uncertainty measures. Clearly, our diagnostic differs from model selection, for which θ would be

re-estimated for any data set.
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As to the timing of estimation, for the recursive forecasts we re-estimate θ in each period from data

Zt. The forecast weights and filter uncertainty measures shown in section 4 are based on full sample

estimates of θ.

4 Hard and soft data in forecasting euro area GDP

We apply the above forecast weights and uncertainty measures to investigate the role of real activity,

survey and financial data in forecasting quarterly euro area GDP growth from the DFM presented

in section 2. We will conduct forecasts based on different amounts of monthly information within

the quarter and we will run counterfactual exercises to assess the effect of publication lags.

Our set (ZT ) has been downloaded on 30 June 2006 and reaches back to the 1st quarter of 1993.

The data contain 76 monthly series, which are listed in the annex (Table A.1), together with their

publication lags and the data transformations applied to render them stationary. Most of the series

refer to the euro area. The real activity data (RT ) contain 32 series, among them components of

euro area industrial production, retail sales, employment data, BoP euro area trade values and 4

series on economic activity in the U.S. Among survey data (ST ), we use 22 series, i.e. 20 series from

the European Commission business, consumer, retail and construction surveys plus 2 series on U.S.

consumer and producer expectations. The financial data (FT ) comprise 22 series, including exchange

and interest rates, equity price indices, and various raw material prices.

4.1 Publication lags and forecast design

Real activity data are subject to longer publication lags as compared to the soft data. The surveys

and monthly averages of financial data are published right at the end of the respective month. In

our data set from 30, June 2006, survey and financial data are therefore already available for June

2006. By contrast, the most important real activity series, industrial production and retail sales, are

published about 6 to 8 weeks after the end of the month. They are therefore available only up to

April 2006, being subject to a publication lag of two months. The employment and trade data are

subject to even longer delays.

To construct the monthly data sets for our recursive forecasts, we proceed as described in section 3.

Starting from our original data, ZT , we re-construct the data sets Zt, which have been available in
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earlier periods t < T , by shifting the pattern of publication lags embodied in ZT recursively back

in time. That is, observation zi,t−h, h ≥ 0 is eliminated in Zt, if and only if observation zi,T−h is

missing in ZT .5

Our main, unbalanced, data set uses the original pattern of publication lags as from 30 June 2006.

As stated above, survey and financial data are available already for June at this point in time. To

see the effects of the publication lags in RT , we also consider two alternative artificial data sets with

reduced publications lags. In the intermediate data set we reduce the publication lag in all real

activity series by one month. This data set is of interest as it corresponds roughly to the situation

that would emerge at around 20 July, after the publication of industrial production data for May.6

In our balanced data set, we assume a publication lag of zero for all series. Such balanced data are

often used in forecast evaluation studies.

We now turn to our forecast design. We inspect seven forecasts of GDP growth in a given quarter

obtained in consecutive months. We start with forecasting in the 1st month of the preceding quarter

and stop in the 1st month of the subsequent quarter, 3 weeks before the first estimate of GDP is

released by Eurostat. For example, for the 2nd quarter of the year, we start forecasting in January

and stop in July. We index the forecasts according to the period at which the forecast is produced.

We will denote the forecasts done between January and March as the preceding quarter forecast

(Q(-1) M1 - Q(-1) M3), the forecasts done between April and June as current quarter forecasts or

nowcasts (Q(0) M1 - Q(0) M3 ), and the final one in July as backcast (Q(+1) M1).

As to model specification, we opt for a specification of r = 5, q = 2 and p = 2 in equation (2), and

will explore the sensitivity of the findings to this choice in section 4.3. We base our choice on the

average RMSE of forecasts from the unbalanced data set over the period of 1998 Q1 to 2005 Q4.

We conduct a specification search across values of r ≤ 8, q ≤ max(r, 5) and p ≤ 3 and take the

average RMSE across horizons ranging from Q(-1) M1 to Q(+1) M1. The forecasting performance

of the model appears rather insensitive to the specification with the average RMSE of the best 6

specifications differing by less than 3%. We therefore do not simply take the specification with the

lowest average RMSE but inspect a wider range of well-performing specifications. Among the best

5Our approach differs from a perfect real-time design only insofar as data revisions are ignored. Such real-time data
are not yet available for the euro area.

6However, this situation prevails for 10 days only and is therefore less relevant compared to our main data set. For
conceptual reasons, we prefer to use an artificial data set rather than the actual data from 18, July. This avoids issues
with data revisions and is perfectly consistent with our classification of series.
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specifications, a value of p = 5 dominates although alternative values of p = 7 and p = 8 appear as

well. Among the specifications with p = 5, a value of q = 2 appears most often, while p takes values

of 1 to 3. We therefore opt for the above specification, which has also been used by Giannone et al.

(2005) and Altissimo et al. (2007). We will explore the sensitivity of the results to the specification

in section 4.3. Using a slightly extended data set, Altissimo et al. (2007) report a good forecast

performance of the dynamic factor model compared to other forecasting tools used at the European

Central Bank.

4.2 Forecast weights

We start with the results on forecast weights and contributions. Chart 1 shows the evolution of the

cumulative forecast weights,
Pt−1

k=0 ωk,i(h) for each series over the sequence of the seven forecasts.
7

For each of the data sets, separate plots are shown of the weights of real activity, survey and financial

data. Charts A.1 to A.3 in the annex display the 30 series with the highest absolute weights for the

forecasts made in the 1st month of each quarter.

A few patterns stand out: first, the forecast weights are concentrated among a rather limited number

of series. For the unbalanced data set, for instance, the 25 indicators with the highest weights account

for at least 75% of the overall sum of weights. These series mostly represent the forward-looking items

of business surveys, such as overall confidence, orders, export orders and production expectations;

among financial data, various measures of the euro area effective exchange rate (EER) and short-

term interest rates; and, among the real activity data, the broad measures of industrial production

(see Chart A.1). Many of these indicators show high mutual correlations within the groups and are

in some cases almost identical by definition. This applies, for instance, to the three series related to

the EER or to the main industrial production series. It seems a plausible outcome of factor models

that highly correlated series are altogether attached either high or low weights, because they would

attain similar factor loadings.

Second, the weights of the hard and soft data evolve in very different ways over the forecast horizon.

Note that the stationarity of the model implies that the weights would tend to decline as the forecast

horizon increases and eventually converge to zero for large horizons. The weights of real activity data

do follow this pattern, but the weights of most of the survey and financial data peak at forecasts

7The cumulative weights give the cumulative impact of current and past values of the indicator to the forecast.
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Q(0) and decline for very short horizons. As a result, the weights of real activity data relative to the

soft data are very low at longer horizons, but they gain considerable importance for shorter horizons.

For the backcast Q(+1) M1, the three main industrial production series rank first.

Third, eliminating the publication lags in the real activity data has strong effects on the forecast

weights. For the balanced data set, in particular, the weights of survey data drop sharply against

the unbalanced data set, while the weights of financial data are less affected. This drop is aligned

with increases in the weights of real activity data. The main industrial production series now attain

the highest weights over the entire horizon (Chart A.3).

Chart 1: Cumulative forecast weights across data sets
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These patterns are mirrored in the contributions of the data groups to the recursive forecasts. Table 1

reports the mean absolute value of contributions (MACs) from the three data groups to the forecasts,
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evaluated over the period from 1998 Q1 to 2005 Q4. For the unbalanced data set, surveys yield

uniformly the highest MAC at all horizons with a relative MAC of more than 50%. Financial data

come next, but their relative MACs decline for shorter horizons. The MACs from real activity are

small and increase only for the very short horizons, Q(0) M3 and Q(+1) M1, when observations on

industrial production for the relevant quarter become available.

Table 1: Mean absolute contributions (MAC) of data groups
(1998 Q1 - 2005Q4)

Data Unbalanced Intermediate Balanced
Fcst Contributions Fcst Contributions Fcst Contributions
Z S F R Z S F R Z S F R

Q(-1) M1 0.158 60 % 57 % 14 % 0.156 51 % 53 % 23 % 0.135 34 % 46 % 46 %

Q(-1) M2 0.183 58 % 57 % 15 % 0.176 52 % 54 % 21 % 0.163 32 % 46 % 44 %

Q(-1) M3 0.196 61 % 56 % 16 % 0.190 50 % 54 % 25 % 0.192 28 % 42 % 49 %

Q(0) M1 0.227 62 % 50 % 16 % 0.222 56 % 47 % 20 % 0.188 34 % 40 % 48 %

Q(0) M2 0.245 63 % 42 % 17 % 0.222 51 % 40 % 28 % 0.199 35 % 35 % 47 %

Q(0) M3 0.230 61 % 37 % 25 % 0.215 50 % 35 % 34 % 0.206 35 % 29 % 52 %

Q(+1) M1 0.210 53 % 35 % 32 % 0.202 38 % 31 % 48 % 0.200 37 % 29 % 50 %

Column Fcst shows the mean absolute values of the forecasts for mean-adjusted GDP. The remaining
columns show the percentage values of the respective contributions of the 3 data groups, real activity
(R), survey (S), and financial data (F) to Fcst. The sum of the percentage values of the MACs across
data groups exceeds one, because in some periods contributions are of conflicting signs.

For our artificial data sets, real activity data become substantially more important. For the balanced

data set, in particular, the MACs from real activity surpass those from the survey and financial data

at all horizons. The increases occur mostly at the expense of survey data, with their MACs being

about halved, while the declines are more moderate for financial data.

The recursive forecasts from the unbalanced and balanced data sets, together with the contributions,

are plotted in Charts A.4 and A.5. They visualize the above patterns for the historical forecasts and

the improvement in the forecasts as the information set expands over time.

4.3 Uncertainty measures

The marginal gains in forecast precision that stem from the individual data groups can be assessed

from the filter uncertainty measure,
q
π−jt+h|t, which is shown in Table 2. Note, first, that filter un-

certainty declines markedly for the shorter horizons, as the information set expands. As discussed in

section 3, the marginal gains are measured from the increase in filter uncertainty, once the respective

group is eliminated from the data set.
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The findings from the filter uncertainty measure are largely in line with those from the forecast

weights. For our unbalanced data set, they indicate a dominance of survey against real activity

data, apart from the very short horizons, and moderate marginal gains from financial data for the

preceding quarter forecasts Q(-1). Real activity series R hardly add to forecast precision. Their

removal (compare data SF against Z) has negligible effects on filter uncertainty, although with the

exception of the nowcast Q(0) M3 and the backcast Q(+1) M1. The removal of survey data (see

data RF), in turn, induces increases in uncertainty over the entire horizon, although the latter are

small for forecasts Q(-1). The removal of financial data (see data RS) results in moderate increases

in the uncertainty of forecasts Q(-1).8

Table 2: Filter uncertainty
(Full-sample parameter estimates)

Unbalanced Intermediate Balanced
Z RS RF SF Z RS RF SF Z RS RF SF

Q(-1) M1 .178 .185 .182 .178 .178 .184 .179 .178 .176 .180 .176 .178
Q(-1) M2 .160 .172 .166 .160 .159 .170 .162 .160 .158 .165 .158 .160
Q(-1) M3 .137 .152 .145 .138 .137 .150 .140 .138 .135 .143 .135 .138
Q(0) M1 .100 .112 .119 .100 .099 .110 .111 .100 .091 .097 .091 .100
Q(0) M2 .070 .078 .100 .071 .064 .071 .076 .071 .056 .060 .056 .071
Q(0) M3 .037 .042 .068 .043 .030 .034 .045 .043 .021 .023 .023 .043

Q(+1) M1 .029 .033 .043 .042 .020 .023 .022 .042 .020 .023 .022 .042
Z refers to the complete data set. The remaining columns refer to data sets that are combined from
real activity (R), survey (S) and financial data (F). RS for instance refers to forecasts based on both
real activity and survey data.

In case of the balanced data set, the role of surveys and real activity data is turned on its head.

The latter now dominate surveys at all horizons. Forecast uncertainty generally declines as the

information from real activity data expands. However, the removal of survey data now has hardly

any effect on filter uncertainty, while the removal of real activity does increase uncertainty. Financial

data continue to contribute to forecast precision, but to a lesser extent compared to the unbalanced

data.

The results for the recursive forecasts, shown in Table 3, should be read with some caution given

the short evaluation sample. Note that, with minor exceptions, eliminating data does not improve

on the forecasts from the full data Z. The comparison of the filter uncertainty and RMSE measures

shows that filter uncertainty constitutes a minor element in the overall forecast uncertainty. This

8Results for the single groups R,S,and F are in line with the reported patterns. They are available upon request.
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underlines the need to use filter uncertainty measures as a diagnostic tool rather than as a model

selection statistics. The table also reports the RMSE from a quarterly autoregressive model for GDP,

which is clearly outperformed by the factor model.

Table 3: RMSE from recursive forecasts
(1998 Q1 - 2005Q4)

AR Unbalanced Intermediate Balanced
Z RS RF SF Z RS RF SF Z RS RF SF

Q(-1) M1 .38 .33 37 .32 .33 .33 .36 .31 .33 .33 .35 .32 .33
Q(-1) M2 .35 .32 .36 .31 .32 .31 .36 .30 .32 .31 .33 .31 .32
Q(-1) M3 .35 .28 .33 .29 .28 .28 .31 .27 .28 .28 .30 .29 .28
Q(0) M1 .35 .28 .30 .30 .28 .27 .29 .27 .28 .26 .27 .26 .28
Q(0) M2 .31 .28 31 .29 .28 .26 .29 .26 .28 .25 .26 .24 .28
Q(0) M3 .31 .25 .28 .27 .27 .24 .26 .24 .27 .24 .25 .24 .27

Q(+1) M1 .31 .24 .25 .24 .27 .23 .24 .23 .27 .23 .24 .23 .27
The table shows the root mean squared error of the recursive forecasts from the various subgroups.

AR denotes the recursive forecasts from a quarterly first-order autoregression for GDP. The step

decreases in the RMSE from the AR forecasts occur in the 2nd month of the quarter, reflecting the

publication of GDP data. For notation see Table 2.

Overall, the results broadly support the findings from the filter uncertainty measure. One difference

in the RMSE compared to the filter uncertainty measure is a somewhat less important role for survey

data against the real activity data. In the unbalanced data set, data RF and SF now fare about

equally well, while RF tends to outperform SF in the intermediate and balanced data sets.

However, while the above results on forecast weights and filter uncertainty are reasonably stable

across sub-samples and robust to changes in the model specification, this holds less so for the RMSE

measure. For the latter, alternative specifications actually restore the dominance of survey against

the real activity data in the unbalanced data set. Tables A.2 in the annex present results for three

alternative specifications, with the numbers of common factors and common shocks (r, q) set to

values of (3, 2), (8, 2), and (8, 4), respectively. Generally, the alternative specifications fare slightly

worse, but the RMSE increases more strongly for data RF . As a result, again, the removal of real

activity data has little effect on the RMSE measure, whereas the removal of survey data results in

larger losses.

Our findings are also robust against changes to the data set. Tables A.3 in the Annex show the results

for an alternative data set that consists of 88 series from the euro area aggregate and its 5 major

economies. These data contain the major items of the European Commission surveys from each
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country (30 series), the major components of industrial production (29 series), and country-specific

long-term interest rates together with the financial data from our original data set (29 series). The

results are very similar compared to out original data.9

5 Conclusions

This paper has proposed various statistics to investigate the role of individual series and groups of

series, respectively, in forecasts from a dynamic factor model. The statistics can be obtained once

a mixed frequency approach is used to combine the monthly factor model with a forecast equation

for GDP in a single state space representation. This also allows to model the dynamics of the latent

factors, which appear as unobserved components in a state space framework (Doz et al., 2005).

In this framework, the Kalman filter apparatus yields forecast weights and allows for an analysis

of the marginal gains in forecast precision stemming from certain groups of series. Crucially, the

Kalman filter provides efficient forecasts also in case of unbalanced data sets, as they arise in short-

term forecasting due to the different timing of data releases. As another advantage, parameters need

not be re-estimated when applying the model to reduced data sets. Hence, sharper results can be

obtained as compared to conventional evaluation exercises, which use sample measures of forecast

precision.

In our application, we have used the measures to investigate the role of real activity data, surveys,

and financial data for the nowcasting and short-term forecasting of euro area GDP from monthly

data. We find that both forecast weights and forecast precision measures attribute an important

role to survey data, whereas real activity data attain rather low weights, apart perhaps from the

backcasts. Moreover, financial data provide complementary information to both real activity and

survey data for nowcasts and one quarter-ahead forecasts of GDP.

However, these patterns are discovered only, once publication lags are properly accounted for. Indeed,

for a counter-factual balanced data set, as often used in forecast evaluation exercises, real activity

data appear as the most important source of information. With real activity data and surveys

9More precisely, we consider data for Germany, France, Italy, Spain and the Netherlands. The survey data include
business and consumer confidence, orders, production expectations and retail stocks. Components of industrial pro-
duction include manufacturing as well as capital, durable consumer and intermediate goods. We also include retail
sales. As to financial data, country-specific interest and exchange rates have apparently become obsolete, which leaves
us with our original data, although we add 2- and 5-year country-specific interest rates.
Other data sets, such as the one underlying the New EuroCoin (Altissimo et al., 2005) are composed of similar series.
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containing similar information, the forecast weights from the latter would decline strongly, while

their contribution to forecast precision almost vanishes. Similarly, the weights of financial data

would decline, although to a lesser extent.

While these results may to some extent depend on the data set and model used, it appears as a general

finding that differences in the timeliness of data releases can have strong effects on the optimal weights

of individual series in the forecast and on their contribution to forecast precision. This suggests that

high attention should be paid in forecast evaluation exercises to the precise information set that is

available in real time. In this sense, our findings are also relevant for the adaptation of variable

selection methods in factor models, as, e.g., those suggested by Bai and Ng (2006) to a dynamic

context. Indeed, it might be the failure to account for differences in publication lags, which results

in the predominant role attributed to real activity data in many applications of so-called bridge

equations to forecast GDP from monthly data (e.g. Rünstler and Sédillot, 2003; Baffigi et al., 2004).

Similarly, while studies have concluded that financial data contribute little to short-term forecasts

of real activity (e.g. Stock and Watson, 2003; Forni et al., 2003), again their results are based on

balanced data sets.

One question that we could not address with our data set is the role of subsequent revisions to the

initial releases of real activity data. The larger noise component in the initial data releases may shift

the evidence even further towards soft data. However, the findings of Diron (2006) suggest that this

effect is very limited.
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Table A.1: Data

No.      Name                             Series Group
Publ  
lag 

(mon)

Transf 
code

1 Trade Intra12 X Total trade - Intra Euro 12 trade, Export Value R 2 2
2 Trade Extra12 X Total trade - Extra Euro 12 trade, Export Value R 2 2
3 Trade Intra12 M Total trade - Intra Euro 12 trade, Imp eort Valu R 2 2
4 Trade Extra12 M Total trade - Extra Euro 12 trade, Imp eort Valu R 2 2
5 Retail vol Retail trade, excep yt of motor vehicles and motorc cles  R 2 2
6 IP total IP-Total industry  R 3 2
7 IP x cns IP-Total Industry ( )excl construction   R 2 2
8 IP manuf IP-Manufacturing  R 2 2
9 IP cns IP-Construction  R 3 2
10 IP x ce IP-Total Industry excl construction and MIG Energy  R 2 2
11 IP energy IP-Energy R 2 2
12 IP capital IP-MIG Cap yital Goods Industr   R 2 2
13 IP D con IP-MIG Durable Consumer Goods Industry  R 2 2
14 IP MIG energy IP-MIG Energy  R 6 2
15 IP IM goods IP-MIG Intermediate Goods Industry  R 2 2
16 IP ND con IP-MIG Non-durable Consumer Goods Industry  R 2 2
17 IP metals IP-Manufacture of basic metals  R 2 2
18 IP chemicals IP-Manufacture of chemicals and chemical products  R 2 2
19 IP electric IP-Manufacture of electrical machinery and apparatus  R 2 2
20 IP machinery IP-Manufacture of machinery q p t and e ui men R 2 2
21 IP paper IP-Manufacture of pulp, pap pap per and er roducts  R 2 2
22 IP plastic IP-Manufacture of rubber and p plastic roducts  R 2 2
23 New cars New passenger car reg sistration R 1 2
24 URX Unemploy lment rate, tota R 2 3
25 Empl cnstr Index of Employ nment, Constructio R 3 2
26 Empl manuf Index of Employ gment, Manufacturin R 3 2
27 Empl total Index of Employ yment, Total Industr R 3 2
28 Empl x cnstr Index of Employ y ( g )ment, Total Industr excludin  construction R 3 2
29 US URX US, Unemployment rate R 1 1
30 US IP US, IP total excl construction R 1 2
31 US empl US, Employment, civilian R 1 2
32 US retail vol US, Retail trade R 1 2
33 Surv Bus conf Industry Survey: Industrial Confidence Indicator  S 0 1
34 Surv Bus prod rec Industry Survey: Production trend observed in recent months  S 0 1
35 Surv Bus Orders Industry Survey: Assessment of order-book levels  S 0 1
36 Surv Bus X orders Industry Survey p: Assessment of ex ort order-book levels  S 0 1
37 Surv Bus ret stocks Industry Survey p: Assessment of stocks of finished roducts  S 0 1
38 Surv Bus prod exp Industry Survey p: Production ex ectations for the months ahead  S 0 1
39 Surv Bus emp exp Industry Survey: Employ pment ex ectations for the months ahead  S 0 1
40 Surv Con conf Consumer Survey: Consumer Confidence Indicator  S 0 1
41 Surv Con last 12m Consumer Survey: General economic situation over last 12 months  S 0 1
42 Surv Con next 12m Consumer Survey: General economic situation over next 12 months  S 0 1
43 Surv Con URX exp Consumer Survey p y p: Unem lo ment ex ectations over next 12 months  S 0 1
44 Surv Cns conf Construction Survey: Construction Confidence Indicator  S 0 1
45 Surv Cns prod rec Construction Survey y p p g: Trend of activit  com ared with recedin  months  S 0 1
46 Surv Cns orders Construction Survey: Assessment of order books  S 0 1
47 Surv Cns emp exp Construction Survey p y p: Em lo ment ex ectations for the months ahead  S 0 1
48 Surv Ret conf Retail Trade Survey: Retail Confidence Indicator  S 0 1
49 Surv Ret current Retail Trade Survey: Present business situation  S 0 1
50 Surv Ret stocks Retail Trade Survey: Assessment of stocks  S 0 1
51 Surv Ret prod exp Retail Trade Survey: Expected business situation  S 0 1
52 Surv Ret emp exp Retail Trade Survey p y p: Em lo ment ex ectations  S 0 1
53 US prod exp US, Production exp gectations in manufacturin S 0 1
54 US con exp US, Consumer exp xectations inde S 0 1
55 NEER ECB Nominal effective exch. rate F 0 2
56 REER CPI ECB Real effective exch. rate CPI deflated F 0 2
57 REER PPI ECB Real effective exch. rate p producer rices deflated F 0 2
58 USD Exch. rate: USD/EUR F 0 2
59 GBP Exch. rate: GBP/EUR F 0 2
60 YEN Exch. rate: YEN/EUR F 0 2
61 Raw mat prices World market prices of raw materials in Euro, total, HWWA F 0 2
62 Raw mat prices x oil World market prices of raw materials in Euro, total, excl energy, HWWA F 0 2
63 Oil price World market prices, crude oil, USD, HWWA F 1 2
64 Gold price Gold p erice, USD, fine ounc F 0 2
65 Oil 1m fwd Brent Crude, 1 month fwd, USD/BBL converted in euro F 0 2
66 Euro500 Eurostoxx 500 F 0 2
67 Euro325 Eurostoxx 325 F 0 2
68 US SP500 US S&P 500 comp xosite inde F 0 2
69 US DowJ US, Dow Jones, industrial average F 0 2
70 US 3m US, Treasury Bill rate, 3-month F 0 1
71 US 10-year US Treasury y y s notes & bonds ield, 10 ear F 0 1
72 10-year 10-year g y dovernment bond iel F 0 1
73 3-mon 3-month interest rate, Euribor F 0 1
74 1-year 1-year g y dovernment bond iel F 0 1
75 2-year 2-year g y dovernment bond iel F 0 1
76 5-year 5-year g y dovernment bond iel F 0 1

      Transformation code:     1 = 3-month difference,   2 = 3-month growth rate,   3 = annual difference of 3-mon difference
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Table A.2.1: Mean absolute contributions
Alternative specifications for the unbalanced data set

(1998 Q1 - 2005Q4)

Data (r=3, q=2) (r=8, q=2) (r=8, q=4)
Fcst Contributions (%) Fcst Contributions (%) Fcst Contributions (%)
Z S F R Z S F R Z S F R

Q(-1) M1 0.143 65 % 56 % 5 % 0.144 65 % 47 % 17 % 0.168 70 % 48 % 12 %

Q(-1) M2 0.170 65 % 55 % 7 % 0.167 67 % 51 % 17 % 0.186 64 % 57 % 13 %

Q(-1) M3 0.183 68 % 57 % 9 % 0.182 68 % 50 % 17 % 0.208 57 % 60 % 14 %

Q(0) M1 0.214 62 % 46 % 11 % 0.225 67 % 45 % 16 % 0.231 59 % 58 % 15 %

Q(0) M2 0.218 63 % 40 % 13 % 0.248 74 % 51 % 18 % 0.225 67 % 59 % 19 %

Q(0) M3 0.207 62 % 36 % 20 % 0.241 65 % 49 % 26 % 0.209 63 % 53 % 30 %

Q(+1) M1 0.200 53 % 33 % 30 % 0.223 47 % 43 % 37 % 0.179 44 % 44 % 51 %

Table A.2.2: Filter uncertainty
Alternative specifications for the unbalanced data set

(Full-sample parameter estimates)

(r=3, q=2) (r=8, q=2) (r=8, q=4)
Z RS RF SF Z RS RF SF Z RS RF SF

Q(-1) M1 .187 .192 .189 .187 .177 .179 .179 .178 .211 .220 .213 .211
Q(-1) M2 .167 .176 .171 .167 .171 .173 .174 .171 .191 .203 .194 .191
Q(-1) M3 .141 .155 .147 .141 .159 .162 .164 .159 .166 .178 .172 .166
Q(0) M1 .095 .115 .109 .095 .122 .130 .136 .122 .126 .135 .143 .127
Q(0) M2 .059 .079 .077 .059 .085 .097 .108 .085 .095 .101 .124 .096
Q(0) M3 .030 .048 .049 .033 .042 .056 .069 .048 .057 .064 .087 .067

Q(+1) M1 .027 .036 .037 .032 .034 .043 .047 .045 .044 .050 .059 .063

Table A.2.3: RMSE from recursive forecasts
Alternative specifications for the unbalanced data set

(1998 Q1 - 2005Q4)
AR (r=3, q=2) (r=8, q=2) (r=8, q=4)

Z RS RF SF Z RS RF SF Z RS RF SF
Q(-1) M1 .38 .33 .36 .35 .34 .34 .38 .34 .34 .36 .38 .35 .36
Q(-1) M2 .35 .33 .36 .34 .34 .33 .35 .34 .33 .34 .37 .34 .34
Q(-1) M3 .35 .30 .32 .32 .30 .30 .32 .33 .30 .29 .35 .32 .29
Q(0) M1 .35 .29 .30 .34 .30 .29 .30 .36 .30 .27 .33 .34 .28
Q(0) M2 .31 .29 .29 .31 .30 .30 .30 .35 .31 .27 .33 .34 .28
Q(0) M3 .31 .26 .27 .28 .28 .27 .30 .30 .30 .28 .31 .29 .30

Q(+1) M1 .31 .25 .24 .25 .27 .24 .25 .25 .29 .25 .27 .25 .28
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Table A.3.1: Mean absolute contributions
Alternative data set
(1998 Q1 - 2005Q4)

Data Unbalanced Intermediate Balanced
Fcst Contributions (%) Fcst Contributions (%) Fcst Contributions (%)
Z S F R Z S F R Z S F R

Q(-1) M1 .145 65 % 54 % 7 % .142 63 % 51 % 10 % .125 53 % 44 % 24 %

Q(-1) M2 .176 69 % 54 % 8 % .173 67 % 53 % 9 % .165 45 % 44 % 30 %

Q(-1) M3 .230 65 % 53 % 7 % .220 60 % 53 % 11 % .196 42 % 48 % 34 %

Q(0) M1 .287 64 % 54 % 8 % .280 64 % 53 % 10 % .210 42 % 44 % 41 %

Q(0) M2 .309 78 % 45 % 10 % .265 66 % 43 % 21 % .228 44 % 35 % 43 %

Q(0) M3 .293 71 % 48 % 19 % .266 59 % 45 % 27 % .245 43 % 36 % 45 %

Q(+1) M1 .258 67 % 39 % 28 % .238 48 % 31 % 46 % .239 48 % 32 % 46 %

Table A.3.2: Filter uncertainty
Alternative data set

(Full-sample parameter estimates)

Unbalanced Intermediate Balanced
Z RS RF SF Z RS RF SF Z RS RF SF

Q(-1) M1 .214 .216 .215 .214 .214 .216 .215 .214 .213 .215 .213 .214
Q(-1) M2 .196 .199 .198 .196 .196 .198 .197 .196 .194 .197 .194 .195
Q(-1) M3 .173 .176 .176 .173 .173 .176 .175 .173 .171 .173 .171 .173
Q(0) M1 .127 .137 .134 .127 .126 .135 .133 .127 .118 .121 .119 .127
Q(0) M2 .084 .102 .098 .084 .080 .090 .088 .084 .073 .075 .075 .084
Q(0) M3 .042 .066 .057 .047 .039 .052 .048 .047 .031 .034 .034 .047

Q(+1) M1 .039 .052 .050 .049 .031 .043 .035 .049 .031 .034 .034 .040

Table A.3.3: RMSE from recursive forecasts
Alternative data set
(1998 Q1 - 2005Q4)

AR Unbalanced Intermediate Balanced
Z RS RF SF Z RS RF SF Z RS RF SF

Q(-1) M1 .38 .34 .37 .32 .34 .34 .37 .32 .34 .34 .37 .33 .34
Q(-1) M2 .35 .33 .38 .34 .33 .33 .38 .33 .33 .33 .36 .32 .33
Q(-1) M3 .35 .31 .35 .32 .30 .31 .35 .30 .30 .30 .34 .29 .30
Q(0) M1 .35 .33 .36 .37 .33 .33 .34 .32 .33 .28 .32 .25 .33
Q(0) M2 .31 .33 .37 .34 .32 .28 .33 .24 .32 .25 .30 .22 .32
Q(0) M3 .31 .27 .30 .31 .30 .25 .28 .23 .30 .23 .26 .21 .30

Q(+1) M1 .31 .25 .27 .23 .28 .23 .26 .20 .28 .23 .26 .20 .28
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Chart A.1: Absolute cumulative weights
Unbalanced data
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Chart A.2: Absolute cumulative weights
Intermediate data
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Chart A.3: Absolute cumulative weights
Balanced data
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Chart A.4: Contributions to the historical forecast

Unbalanced data
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Chart A.5: Contributions to the historical forecast

Balanced data
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No. Name Q(-1)  Q(-1)  Q(-1)  Q(0)  Q(0)  Q(0)  Q(+1)  
M1    M2    M3    M1    M2    M3    M1    

1 Trade Intra12 X 0.1455 0.2324 0.2735 0.3587 0.4384 0.6378 0.8096
2 Trade Extra12 X 0.0647 0.1244 0.1565 0.2681 0.3512 0.5207 0.6355
3 Trade Intra12 M 0.0925 0.1513 0.1816 0.2415 0.2977 0.4324 0.5401
4 Trade Extra12 M 0.0544 0.1166 0.1617 0.2612 0.3519 0.4805 0.5582
5 Retail vol 0.0325 0.0527 0.0650 0.0763 0.0903 0.1323 0.1607
6 IP total 0.1431 0.2657 0.3775 0.4846 0.6031 0.5927 0.9423
7 IP x cns 0.7353 1.1347 1.4319 1.7672 2.0379 3.2173 4.2195
8 IP manuf 0.8207 1.2723 1.7796 2.2727 2.5280 4.3636 5.7960
9 IP cns 0.0042 0.0132 0.0303 0.0334 0.0437 0.0532 0.0716
10 IP x ce 0.6450 0.9900 1.3275 1.6601 1.8415 3.0949 4.0812
11 IP energy 0.0081 -0.0019 -0.0257 -0.0404 -0.0554 -0.0741 -0.0791
12 IP capital 0.1525 0.2418 0.2991 0.3601 0.4265 0.6586 0.8517
13 IP D con 0.1021 0.1686 0.2284 0.2770 0.3234 0.5366 0.6982
14 IP MIG energy -0.0010 -0.0058 -0.0163 -0.0201 -0.0313 -0.0373 -0.0335
15 IP IM goods 0.2685 0.4213 0.5619 0.7655 0.8383 1.4278 1.9043
16 IP ND con 0.0513 0.0892 0.1258 0.1688 0.1984 0.3252 0.4186
17 IP metals 0.1246 0.1913 0.2362 0.3217 0.3495 0.5871 0.7898
18 IP chemicals 0.0653 0.0993 0.1240 0.1841 0.2038 0.3584 0.4761
19 IP electric 0.1947 0.3125 0.4017 0.5048 0.5851 0.9421 1.2189
20 IP machinery 0.0647 0.1090 0.1369 0.1765 0.2186 0.3190 0.4013
21 IP paper 0.0415 0.0654 0.0867 0.1091 0.1277 0.2332 0.2127
22 IP plastic 0.1234 0.1740 0.2344 0.3123 0.3589 0.5810 0.7618
23 New cars 0.0158 0.0307 0.0697 0.0576 0.1144 0.1406 0.1571
24 URX 0.0451 0.0813 0.1267 0.1480 0.1759 0.2521 0.3157
25 Empl cnstr 0.0014 0.0232 0.0497 0.0627 0.1039 0.0964 0.0701
26 Empl manuf 0.0536 0.1485 0.2502 0.3143 0.4278 0.3914 0.5109
27 Empl total 0.0644 0.2198 0.3817 0.3987 0.6451 0.5958 0.6171
28 Empl x cnstr 0.0628 0.1877 0.3249 0.3580 0.5428 0.5019 0.5764
29 US URX 0.1268 0.1510 0.1810 0.1683 0.3616 0.3806 0.4314
30 US IP 0.1997 0.2486 0.3621 0.3439 0.7121 0.7248 0.8104
31 US empl 0.1882 0.2166 0.2824 0.2304 0.4697 0.5353 0.6045
32 US retail vol -0.1355 -0.1374 -0.1002 -0.0831 -0.1705 -0.1546 -0.1797
33 Surv Bus conf 3.1260 3.7955 4.7635 5.8394 6.7376 5.8624 4.0482
34 Surv Bus prod rec 0.9503 1.1446 1.4550 1.8963 2.2104 1.9454 1.3013
35 Surv Bus Orders 2.5062 3.0932 3.9443 4.8907 5.7774 5.0706 3.5301
36 Surv Bus X orders 2.3510 2.9065 3.5820 4.5112 5.1236 4.3343 2.9341
37 Surv Bus ret stocks 1.0169 1.2514 1.6055 2.1044 2.3932 2.1251 1.4457
38 Surv Bus prod exp 1.2746 1.5386 1.9247 2.5178 2.8375 2.3938 1.6304
39 Surv Bus emp exp 1.5876 1.9560 2.3970 3.0868 3.6528 3.1716 2.1852
40 Surv Con conf 0.9829 1.2181 1.6806 2.0238 2.6003 2.3774 1.7868
41 Surv Con last 12m 0.8304 1.0374 1.5178 1.7505 2.3418 2.1441 1.7117
42 Surv Con next 12m 0.6786 0.8269 1.1316 1.3380 1.7489 1.5607 1.1887
43 Surv Con URX exp 1.1685 1.4484 1.9772 1.8608 2.7360 2.4949 1.8823
44 Surv Cns conf 0.1216 0.1992 0.5125 0.4236 0.7048 0.7340 0.7169
45 Surv Cns prod rec -0.0062 0.0056 0.1830 0.1493 0.2775 0.3767 0.3289
46 Surv Cns orders 0.0379 0.0686 0.2174 0.1478 0.2987 0.3057 0.3417
47 Surv Cns emp exp 0.0807 0.1395 0.3868 0.3963 0.5449 0.5967 0.5676
48 Surv Ret conf 0.0537 0.0665 0.1568 0.1485 0.2305 0.2486 0.2223
49 Surv Ret current 0.0865 0.1065 0.1697 0.1988 0.2511 0.2499 0.1878
50 Surv Ret stocks 0.0958 0.1162 0.1319 0.1943 0.2252 0.1956 0.1167
51 Surv Ret prod exp -0.0663 -0.0814 -0.0032 -0.0880 -0.0244 0.0258 0.1004
52 Surv Ret emp exp 0.0458 0.0596 0.0954 0.0474 0.0994 0.1113 0.1083
53 US prod exp -0.2686 -0.3351 -0.4429 -0.6315 -0.7396 -0.7155 -0.4261
54 US con exp -0.1953 -0.2324 -0.2050 -0.4043 -0.4126 -0.3908 -0.1754
55 NEER 1.5890 2.1947 2.5500 2.7872 2.7041 2.0706 1.4081
56 REER CPI 1.7864 2.4326 2.8863 3.2647 3.2651 2.6119 1.7604
57 REER PPI 1.2656 1.7855 2.0768 2.1811 1.9947 1.4853 1.0101
58 USD 0.7758 1.0708 1.3151 1.4884 1.4272 1.1899 0.7593
59 GBP 0.6092 0.7934 1.0321 1.2514 1.2799 1.1078 0.7215
60 YEN 0.1259 0.1758 0.1919 0.1993 0.1987 0.1311 0.1035
61 Raw mat prices 0.6979 0.8777 0.5276 0.7354 0.6908 0.2251 0.0813
62 Raw mat prices x oil 0.4716 0.5781 0.5725 0.6939 0.7451 0.5489 0.3840
63 Oil price -0.0459 -0.0460 -0.1658 -0.0427 -0.0522 -0.1438 -0.2424
64 Gold price -0.3871 -0.4915 -0.6667 -0.8978 -0.9831 -0.9156 -0.6046
65 Oil 1m fwd 0.2258 0.2863 0.0537 0.1135 0.0885 -0.1551 -0.1509
66 Euro500 0.1179 0.1772 0.3870 0.1582 0.2871 0.1660 0.2671
67 Euro325 0.0879 0.1486 0.4956 0.0957 0.2570 0.1448 0.3106
68 US SP500 -0.1223 -0.1285 0.0022 -0.3015 -0.2307 -0.2667 -0.0371
69 US DowJ -0.0873 -0.0974 -0.0302 -0.2438 -0.2390 -0.2962 -0.1183
70 US 3m 0.3376 0.4141 0.4639 0.5216 0.7093 0.6111 0.5948
71 US 10-year -0.1835 -0.1994 -0.2689 -0.5018 -0.5030 -0.5416 -0.2127
72 10-year -0.2102 -0.1880 -0.4419 -0.8021 -0.6957 -0.8937 -0.3160
73 3-mon 0.9098 1.1583 1.3472 1.6533 2.0856 1.7543 1.2137
74 1-year 1.1425 1.4914 1.7050 2.0319 2.6667 2.1250 1.7153
75 2-year 0.5420 0.7418 0.7493 0.7095 1.1487 0.6857 0.8036
76 5-year 0.2225 0.3595 0.2026 -0.0364 0.3712 -0.0363 0.3760

Table A.4: Cumulative forecast weights (unbalanced data)
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No. Name Q(-1)  Q(-1)  Q(-1)  Q(0)  Q(0)  Q(0)  Q(+1)  
M1    M2    M3    M1    M2    M3    M1    

1 Trade Intra12 X 0.2406 0.3385 0.4002 0.4531 0.7322 0.8349 0.9951
2 Trade Extra12 X 0.0269 0.1108 0.1947 0.3269 0.5662 0.6552 0.7574
3 Trade Intra12 M 0.1514 0.2185 0.2614 0.3025 0.4866 0.5595 0.6601
4 Trade Extra12 M 0.0097 0.0950 0.1858 0.3059 0.5064 0.5784 0.6525
5 Retail vol 0.0646 0.0850 0.0963 0.0962 0.1451 0.1701 0.1965
6 IP total 0.1938 0.3238 0.4286 0.5442 0.5828 0.9555 1.2886
7 IP x cns 1.3244 1.7496 2.2006 2.2912 3.5805 4.3397 5.2931
8 IP manuf 1.4504 1.9336 2.7165 2.9675 4.4862 5.8968 7.3476
9 IP cns 0.0030 0.0132 0.0359 0.0371 0.0437 0.0721 0.0948
10 IP x ce 1.1722 1.5352 2.0459 2.1728 3.2888 4.1980 5.1694
11 IP energy 0.0431 0.0272 -0.0190 -0.0415 -0.0522 -0.0775 -0.0915
12 IP capital 0.2841 0.3782 0.4527 0.4608 0.7186 0.8723 1.0609
13 IP D con 0.1693 0.2454 0.3466 0.3576 0.5604 0.7175 0.8799
14 IP MIG energy 0.0025 -0.0027 -0.0124 -0.0198 -0.0261 -0.0317 -0.0290
15 IP IM goods 0.4571 0.6282 0.8627 1.0048 1.5110 1.9512 2.4220
16 IP ND con 0.0719 0.1172 0.1827 0.2152 0.3335 0.4283 0.5221
17 IP metals 0.2174 0.2932 0.3707 0.4276 0.6578 0.8149 1.0065
18 IP chemicals 0.0988 0.1372 0.1879 0.2428 0.3803 0.4886 0.5990
19 IP electric 0.3412 0.4721 0.6136 0.6529 1.0194 1.2634 1.5323
20 IP machinery 0.1059 0.1549 0.1933 0.2184 0.3427 0.4065 0.4889
21 IP paper 0.0591 0.0894 0.0812 0.1048 0.2458 0.2121 0.1925
22 IP plastic 0.1987 0.2478 0.3493 0.4032 0.6209 0.7814 0.9609
23 New cars 0.0604 0.0849 0.1294 0.1522 0.1531 0.1675 0.1028
24 URX 0.0676 0.1106 0.1871 0.1827 0.2638 0.3302 0.4034
25 Empl cnstr -0.0130 0.0118 0.0392 0.0578 0.0822 0.0622 0.0455
26 Empl manuf 0.0278 0.1310 0.2354 0.3279 0.3778 0.4907 0.5783
27 Empl total -0.0008 0.1700 0.3351 0.3931 0.5380 0.5798 0.5802
28 Empl x cnstr 0.0245 0.1600 0.3002 0.3618 0.4645 0.5456 0.5904
29 US URX 0.2473 0.3162 0.3791 0.5570 0.5075 0.4609 0.2390
30 US IP 0.4562 0.5809 0.7432 1.0551 0.9769 0.8704 0.4930
31 US empl 0.2768 0.3537 0.4960 0.7273 0.6591 0.6541 0.3346
32 US retail vol -0.0786 -0.1013 -0.1268 -0.2622 -0.2114 -0.1778 -0.0522
33 Surv Bus conf 2.1964 2.8061 3.5408 4.8342 4.4035 3.8918 2.2330
34 Surv Bus prod rec 0.6541 0.8297 1.0717 1.5609 1.4313 1.2801 0.6969
35 Surv Bus Orders 1.7241 2.2508 2.9170 4.0383 3.7845 3.3819 1.9614
36 Surv Bus X orders 1.6347 2.1342 2.6787 3.7484 3.3754 2.8973 1.6013
37 Surv Bus ret stocks 0.7090 0.9181 1.1847 1.7371 1.5526 1.4014 0.7891
38 Surv Bus prod exp 0.9303 1.1725 1.4497 2.0995 1.8567 1.5819 0.8891
39 Surv Bus emp exp 1.0927 1.4252 1.7844 2.5587 2.4137 2.1310 1.2123
40 Surv Con conf 0.6469 0.8512 1.1993 1.6297 1.6673 1.5702 1.0222
41 Surv Con last 12m 0.5316 0.7121 1.0657 1.3911 1.4981 1.4228 1.0204
42 Surv Con next 12m 0.4426 0.5708 0.7958 1.0656 1.1010 1.0139 0.6761
43 Surv Con URX exp 0.7807 1.0276 1.4255 1.4999 1.7646 1.6568 1.0908
44 Surv Cns conf 0.0903 0.1554 0.3534 0.3266 0.4562 0.4991 0.4859
45 Surv Cns prod rec -0.0082 -0.0003 0.1129 0.1041 0.1657 0.2457 0.2093
46 Surv Cns orders 0.0279 0.0540 0.1444 0.1063 0.1890 0.2076 0.2454
47 Surv Cns emp exp 0.0543 0.1017 0.2591 0.3086 0.3448 0.4001 0.3753
48 Surv Ret conf 0.0334 0.0435 0.1038 0.1109 0.1430 0.1622 0.1359
49 Surv Ret current 0.0557 0.0734 0.1222 0.1606 0.1666 0.1692 0.1067
50 Surv Ret stocks 0.0621 0.0794 0.0984 0.1604 0.1485 0.1289 0.0490
51 Surv Ret prod exp -0.0443 -0.0594 -0.0214 -0.0897 -0.0352 0.0071 0.0840
52 Surv Ret emp exp 0.0442 0.0571 0.0751 0.0391 0.0714 0.0807 0.0767
53 US prod exp -0.1591 -0.2157 -0.3238 -0.5208 -0.4982 -0.4852 -0.2064
54 US con exp -0.1080 -0.1402 -0.1541 -0.3426 -0.2847 -0.2658 -0.0473
55 NEER 1.6695 2.2548 2.3271 2.6211 2.1909 1.6656 1.0649
56 REER CPI 1.7861 2.4061 2.5694 3.0154 2.5638 2.0276 1.2426
57 REER PPI 1.4500 1.9557 1.9653 2.1133 1.7165 1.2655 0.8449
58 USD 0.7886 1.0716 1.1839 1.3869 1.1489 0.9372 0.5375
59 GBP 0.5480 0.7214 0.8641 1.1098 0.9374 0.7966 0.4331
60 YEN 0.1367 0.1850 0.1788 0.1901 0.1614 0.1111 0.0899
61 Raw mat prices 0.6131 0.7977 0.5206 0.7092 0.5386 0.2290 0.1423
62 Raw mat prices x oil 0.3984 0.5025 0.4768 0.6128 0.5250 0.3923 0.2498
63 Oil price 0.0904 0.1116 -0.0904 -0.0818 -0.1091 -0.2228 -0.1306
64 Gold price -0.2869 -0.3825 -0.5209 -0.7673 -0.6904 -0.6390 -0.3352
65 Oil 1m fwd 0.2003 0.2640 0.0918 0.1327 0.0857 -0.0720 -0.0434
66 Euro500 0.1756 0.2321 0.3270 0.1447 0.2253 0.1392 0.2447
67 Euro325 0.1709 0.2293 0.4145 0.0909 0.2073 0.1296 0.3018
68 US SP500 -0.0287 -0.0327 0.0165 -0.2538 -0.1398 -0.1644 0.0612
69 US DowJ -0.0092 -0.0156 -0.0020 -0.1972 -0.1448 -0.1886 -0.0141
70 US 3m 0.2347 0.3076 0.3398 0.4276 0.4621 0.4180 0.3765
71 US 10-year -0.0842 -0.0946 -0.1929 -0.4136 -0.3445 -0.3586 -0.0324
72 10-year -0.1306 -0.1025 -0.3292 -0.6673 -0.4822 -0.5659 0.0076
73 3-mon 0.6158 0.8481 1.0298 1.3987 1.4287 1.2384 0.7358
74 1-year 0.7863 1.1138 1.2894 1.7029 1.7930 1.5139 1.1722
75 2-year 0.3872 0.5785 0.5654 0.5876 0.7528 0.5201 0.6778
76 5-year 0.1564 0.2891 0.1350 -0.0500 0.1964 0.0134 0.4532

Table A.5: Cumulative forecast weights (intermediate data)
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No. Name Q(-1)  Q(-1)  Q(-1)  Q(0)  Q(0)  Q(0)  Q(+1)  
M1    M2    M3    M1    M2    M3    M1    

1 Trade Intra12 X 0.4267 0.5700 0.6878 0.8434 1.0131 0.9967 0.9496
2 Trade Extra12 X 0.4476 0.5896 0.6240 0.7460 0.8180 0.7605 0.6915
3 Trade Intra12 M 0.2655 0.3626 0.4453 0.5542 0.6664 0.6644 0.6307
4 Trade Extra12 M 0.3595 0.4875 0.5195 0.6248 0.6987 0.6637 0.6272
5 Retail vol 0.0478 0.0727 0.1119 0.1447 0.1844 0.2033 0.1913
6 IP total 0.5449 0.7467 1.0337 1.3222 1.5745 1.7122 1.6614
7 IP x cns 1.8666 2.4868 3.3564 4.1519 4.9896 5.2791 5.0841
8 IP manuf 2.1100 2.8237 4.2314 5.4437 6.3071 7.3082 7.2130
9 IP cns 0.0067 0.0166 0.0449 0.0545 0.0819 0.1316 0.1448
10 IP x ce 1.5833 2.1204 3.1059 3.9610 4.6149 5.1846 5.0393
11 IP energy -0.0273 -0.0448 -0.0518 -0.0590 -0.0602 -0.0910 -0.1088
12 IP capital 0.3266 0.4532 0.6231 0.7803 0.9703 1.0567 1.0314
13 IP D con 0.2924 0.3998 0.5446 0.6535 0.7802 0.8797 0.8562
14 IP MIG energy -0.0256 -0.0398 -0.0549 -0.0601 -0.0701 -0.1020 -0.1157
15 IP IM goods 0.7796 1.0417 1.4308 1.9102 2.1644 2.4197 2.3676
16 IP ND con 0.1770 0.2435 0.3179 0.4051 0.4654 0.5207 0.5054
17 IP metals 0.3706 0.4919 0.6455 0.8465 0.9582 1.0090 0.9632
18 IP chemicals 0.2438 0.3128 0.3903 0.5169 0.5576 0.5971 0.5572
19 IP electric 0.5099 0.6951 0.9363 1.1766 1.4149 1.5447 1.4860
20 IP machinery 0.1688 0.2372 0.3019 0.3754 0.4570 0.4826 0.4759
21 IP paper 0.1783 0.0740 0.0588 0.2995 0.2132 0.1903 0.1843
22 IP plastic 0.3749 0.4422 0.5887 0.7571 0.8796 0.9610 0.9403
23 New cars 0.0319 0.0448 0.0575 0.0597 0.0754 0.0964 0.1011
24 URX 0.1243 0.1697 0.2271 0.2630 0.3550 0.4143 0.4416
25 Empl cnstr -0.0460 -0.0234 -0.0209 -0.0152 0.0315 0.0599 0.1122
26 Empl manuf 0.0965 0.2202 0.3583 0.5294 0.6537 0.7004 0.7359
27 Empl total 0.0176 0.2048 0.3378 0.3676 0.6181 0.7042 0.8522
28 Empl x cnstr 0.0697 0.2227 0.3824 0.4355 0.6332 0.7059 0.8014
29 US URX 0.1124 -0.1410 -0.1596 -0.1917 -0.2244 -0.2402 -0.2342
30 US IP 0.2136 0.2136 0.2136 0.2136 0.2136 0.2136 0.2136
31 US empl 0.1094 0.1356 0.1913 0.2314 0.2808 0.3375 0.3301
32 US retail vol 0.0114 0.0120 -0.0180 -0.0489 -0.0606 -0.0638 -0.0506
33 Surv Bus conf 1.0020 1.2983 1.5051 1.7165 2.0334 2.1417 2.1792
34 Surv Bus prod rec 0.2762 0.3526 0.4339 0.5261 0.6378 0.6854 0.6798
35 Surv Bus Orders 0.6996 0.9402 1.1783 1.3863 1.7189 1.8521 1.9105
36 Surv Bus X orders 0.6723 0.9022 1.0911 1.2861 1.5168 1.5523 1.5579
37 Surv Bus ret stocks 0.3258 0.4248 0.5010 0.6092 0.7130 0.7676 0.7715
38 Surv Bus prod exp 0.4952 0.6258 0.6692 0.7897 0.8815 0.8761 0.8700
39 Surv Bus emp exp 0.4198 0.5683 0.7068 0.8673 1.0830 1.1511 1.1785
40 Surv Con conf 0.2349 0.3153 0.4577 0.5443 0.7674 0.9026 0.9979
41 Surv Con last 12m 0.1759 0.2497 0.4009 0.4730 0.7134 0.8588 0.9970
42 Surv Con next 12m 0.1703 0.2181 0.3085 0.3590 0.5117 0.5941 0.6606
43 Surv Con URX exp 0.2950 0.4009 0.5575 0.5097 0.8246 0.9601 1.0640
44 Surv Cns conf 0.0834 0.1318 0.1826 0.1745 0.2866 0.3692 0.4754
45 Surv Cns prod rec 0.0179 0.0271 0.0577 0.0535 0.1036 0.1700 0.2068
46 Surv Cns orders 0.0361 0.0590 0.0812 0.0748 0.1344 0.1747 0.2401
47 Surv Cns emp exp 0.0534 0.0857 0.1298 0.1373 0.2125 0.2884 0.3679
48 Surv Ret conf 0.0156 0.0190 0.0412 0.0405 0.0734 0.1064 0.1337
49 Surv Ret current 0.0114 0.0168 0.0398 0.0466 0.0711 0.0931 0.1042
50 Surv Ret stocks 0.0118 0.0136 0.0270 0.0382 0.0501 0.0536 0.0476
51 Surv Ret prod exp 0.0115 0.0100 0.0119 -0.0043 0.0166 0.0458 0.0840
52 Surv Ret emp exp 0.0395 0.0512 0.0480 0.0366 0.0507 0.0621 0.0752
53 US prod exp 0.0097 0.0049 -0.0700 -0.1103 -0.1685 -0.2160 -0.1999
54 US con exp 0.0318 0.0383 -0.0038 -0.0478 -0.0648 -0.0776 -0.0447
55 NEER 1.5370 2.0825 1.6372 1.6428 1.4796 1.1465 1.0401
56 REER CPI 1.5421 2.0903 1.7043 1.7476 1.6209 1.3218 1.2146
57 REER PPI 1.4659 1.9719 1.4944 1.4758 1.2732 0.9362 0.8276
58 USD 0.6767 0.9262 0.7776 0.7906 0.7176 0.5938 0.5261
59 GBP 0.4118 0.5464 0.5001 0.5333 0.5134 0.4658 0.4273
60 YEN 0.1346 0.1817 0.1375 0.1397 0.1231 0.0898 0.0866
61 Raw mat prices 0.4513 0.6185 0.4132 0.4834 0.3994 0.1876 0.1215
62 Raw mat prices x oil 0.2863 0.3700 0.2963 0.3241 0.3133 0.2526 0.2418
63 Oil price 0.0615 0.0896 0.0025 0.0243 -0.0130 -0.1097 -0.1386
64 Gold price -0.1212 -0.1706 -0.2159 -0.2675 -0.3075 -0.3322 -0.3282
65 Oil 1m fwd 0.1469 0.2068 0.1106 0.1365 0.0969 -0.0184 -0.0536
66 Euro500 0.2406 0.3114 0.2592 0.2104 0.2218 0.1885 0.2410
67 Euro325 0.2761 0.3592 0.3359 0.2306 0.2491 0.2213 0.2978
68 US SP500 0.0976 0.1255 0.0910 0.0193 0.0256 0.0069 0.0610
69 US DowJ 0.0921 0.1143 0.0725 0.0181 0.0003 -0.0383 -0.0128
70 US 3m 0.1133 0.1595 0.1631 0.1906 0.2540 0.2705 0.3634
71 US 10-year 0.0889 0.1271 0.0286 -0.0085 -0.0344 -0.0889 -0.0332
72 10-year 0.0272 0.1022 -0.0263 -0.0516 -0.0319 -0.1293 -0.0084
73 3-mon 0.1731 0.2929 0.3861 0.4822 0.6559 0.6786 0.7052
74 1-year 0.3025 0.5083 0.5732 0.7223 0.9636 0.9804 1.1193
75 2-year 0.2080 0.3592 0.3274 0.3900 0.5354 0.4864 0.6386
76 5-year 0.1416 0.2753 0.1741 0.1997 0.3256 0.2445 0.4164

Table A.6: Cumulative forecast weights (balanced data)
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