Opcje wyszukiwania
Podstawy Media Warto wiedzieć Badania i publikacje Statystyka Polityka pieniężna €uro Płatności i rynki Praca
Podpowiedzi
Kolejność
Nie ma wersji polskiej

Kristina Bluwstein

22 November 2021
WORKING PAPER SERIES - No. 2614
Details
Abstract
We develop early warning models for financial crisis prediction by applying machine learning techniques to macrofinancial data for 17 countries over 1870–2016. Most nonlin-ear machine learning models outperform logistic regression in out-of-sample predictions and forecasting. We identify economic drivers of our machine learning models using a novel framework based on Shapley values, uncovering nonlinear relationships between the predic-tors and crisis risk. Throughout, the most important predictors are credit growth and the slope of the yield curve, both domestically and globally. A flat or inverted yield curve is of most concern when nominal interest rates are low and credit growth is high.
JEL Code
C40 : Mathematical and Quantitative Methods→Econometric and Statistical Methods: Special Topics→General
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E44 : Macroeconomics and Monetary Economics→Money and Interest Rates→Financial Markets and the Macroeconomy
F30 : International Economics→International Finance→General
G01 : Financial Economics→General→Financial Crises

Ta strona używa plików cookie

Wykorzystujemy funkcjonalne pliki cookie do przechowywania preferencji użytkowników, analityczne pliki cookie do zwiększania wydajności strony oraz pliki cookie podmiotów zewnętrznych, których usługi są dostępne na stronie.

Użytkownicy strony mogą udzielić lub odmówić na to zgody. Więcej informacji o plikach cookie, wybranych preferencjach oraz wykorzystywanych logach można znaleźć na następujących stronach:

Oświadczenie o ochronie prywatności

Polityka dotycząca plików cookie