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Abstract

We propose a novel observation-driven nite mixture model for the study of bank-
ing data. The model accommodates time-varying component means and covariance
matrices, normal and Student’s ¢ distributed mixtures, and economic determinants of
time-varying parameters. Monte Carlo experiments suggest that units of interest can
be classi ed reliably into distinct components in a variety of settings. In an empirical
study of 208 European banks between 2008Q1{2015Q4, we identify six business model
components and discuss how their properties evolve over time. Changes in the yield

curve predict changes in average business model characteristics.
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Non-technical summary

Banks are highly heterogenous, differing widely in terms of size, complexity, organiza-
tion, activities, funding choices, and geographical reach. Understanding this diversity is
of key importance, for example, for the study of risks acting upon and originating from
the financial sector, for impact assessments of unconventional monetary policies, as well as
for the benchmarking of banks to appropriate peer groups for micro-prudential supervisory
purposes.

This paper proposes a novel statistical model for the study of banking data. The dynamic
framework allows us to robustly classify (cluster) banks into approximately homogeneous
groups. The model accommodates time-varying component means and covariance matrices,
normal and Student’s ¢ distributed mixtures, as well as economic determinants of time-
varying parameters. Extensive Monte Carlo experiments suggest that our model is able to
reliably classify banks into distinct mixture components, as well as to simultaneously infer
the relevant time-varying parameters.

In an empirical study of 208 European banks between 2008Q1-2015Q4, we identify six
business model components and discuss how these adjust to post-crisis financial develop-
ments. We distinguish A) large universal banks, including globally systemically important
banks (G-SIBs), B) international diversified lends, C) fee-based banks, D) domestic diver-
sified lenders, E) domestic retail lenders, and F) small international banks. The global
financial crisis between 2008-2009 had a differential impact on banks with different business
models. We also observe such differences across business model components during the more
recent euro area sovereign debt crisis between 2010-2012.

In addition, we study how banks’ business models adapt to changes in yield curve factors,
specifically the level and slope, as yields fall to approximately zero at the end of our sample.
The yield curve factors are extracted from AAA-rated euro area sovereign bonds based on a
Svensson (1994) model. We find that, as long-term interest rates decrease, banks on average
(across all business models) tend to grow larger, hold more assets in trading portfolios to

offset declines in loan demand, hold more sizeable derivative books, and, in some cases,
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increase leverage and decrease funding through customer deposits. The direction of these
effects — increased size, leverage, complexity, and a less stable funding base — are potentially

problematic and need to be assessed from a financial stability perspective.
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1 Introduction

Banks are highly heterogeneous, differing widely in terms of size, complexity, organization,
activities, funding choices, and geographical reach. Understanding this diversity is of key
importance, for example, for the study of risks acting upon and originating from the financial
sector, for impact assessments of unconventional monetary policies and financial regulations,
as well as for the benchmarking of banks to appropriate peer groups for supervisory pur-
poses.! While there is broad agreement that financial institutions suffer in an environment
of extremely low interest rates, see e.g. Nouy (2016), it is less clear which types of banks
(business models) are affected the most. A study of banks’ business models at low interest
rates provides insight into the overall diversity of business models, the strategies adopted by
individual institutions, and which types of banks are impacted the most by time variation
in the yield curve.? We study these questions in a novel modeling framework.

This paper proposes an observation-driven finite mixture model for the analysis of high-
dimensional banking data. The framework accommodates time-varying mean and covariance
parameters and allows us to robustly cluster banks into approximately homogeneous groups.
We first present a simple baseline mixture model for normally distributed data with time-
varying component means, and subsequently consider extensions to time-varying covariance
matrices, Student’s ¢ distributed mixture densities, and economic predictors of time-varying
parameters. We apply our modeling framework to a multivariate panel of N = 208 European
banks between 2008Q1-2015Q4, i.e. over T" = 32 quarters, considering D = 13 bank-level

indicator variables for J groups of similar banks. We thus track banking sector data through

LFor example, the assessment of the viability and the sustainability of a bank’s business model plays a
pronounced role in the European Central Bank’s new Supervisory Review and Examination Process (SREP)
for Signi cant Institutions within its Single Supervisory Mechanism; see SSM (2016). Similar procedures
exist in other jurisdictions.

2An improved understanding of the nancial stability consequences of low-for-long interest rates is a top
policy priority. For example, Fed Chair Yellen (2014) pointed to \... the potential for low interest rates
to heighten the incentives of nancial market participants to reach for yield and take on risk, and ... the
limits of macroprudential measures to address these and other nancial stability concerns.” Similarly, ECB
President Draghi (2016) explained that \One particular challenge has arisen across a large part of the world.
That is the extremely low level of nominal interest rates. ... Very low levels are not innocuous. They put
pressure on the business model[s] of nancial institutions ... by squeezing net interest income. And this
comes at a time when pro tability is already weak, when the sector has to adjust to post-crisis deleveraging
in the economy, and when rapid changes are taking place in regulation."
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the 20082009 global financial crisis, the 2010-2012 euro area sovereign debt crisis, as well
as the relatively calmer but persistent low-interest rate environment of the post-crises period
between 2013-2015. We identify J = 6 business model components and discuss how these
adjust to changes in the yield curve.

In our finite mixture model, all time-varying parameters are driven by the score of the
local (time t) objective function using the so-called Generalized Autoregressive Score (GAS)
approach developed by Creal et al. (2013); see also Harvey (2013). In this setting, the time-
varying parameters are perfectly predictable one step ahead. This feature makes the model
observation-driven in the terminology of Cox (1981). The likelihood is known in closed
form through a standard prediction error decomposition, facilitating parameter estimation
via likelihood-based expectation-maximization (EM) procedures. Our approach extends the
standard score-driven approach of Creal et al. (2013) by using the scores of the EM-based
criterion function rather than that of the usual predictive likelihood function.

Extensive Monte Carlo experiments suggest that our model is able to reliably classify
units of interest into distinct mixture components, as well as to simultaneously infer the
relevant component-specific time-varying parameters. In our simulations, the cluster classi-
fication is perfect for sufficiently large distances between the time-varying cluster means and
sufficiently informative signals relative to the variance of the noise terms.? This holds under
correct model specification as well as under specific forms of model mis-specification. As the
simulated data become less informative or the time-varying cluster means are closer together,
the share of correct classifications decreases, but generally remains high. Estimation fit and
the share of correct classifications decrease further if we incorrectly assume a thin-tailed
mixture specification when the data are generated by a fat-tailed mixture distribution. As
a result, robust models based on fat-tailed mixtures are appropriate for the fat-tailed bank
accounting ratios in our empirical sample.

We apply our model to classify European banks into distinct business model components.
We distinguish A) large universal banks, including globally systemically important banks
(G-SIBs), B) international diversified lenders, C) fee-based banks, D) domestic diversified

3We use the terms ‘component’, ‘mixture component’ and ‘cluster’ interchangeably.
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lenders, E) domestic retail lenders, and F) small international banks. The similarities and
differences between these components are discussed in detail in the main text. Based on
our component mean estimates and business model classification, we find that the global
financial crisis between 2008-2009 affected banks with different business models differently.
This is in line with findings by Altunbas et al. (2011) and Chiorazzo et al. (2016), who study
U.S.-based institutions.

In addition, we study how banks’ business models adapt to changes in yield curve factors,
specifically level and slope of the yield curve. The yield curve factors are extracted from
AAA-rated euro area sovereign bonds based on a Svensson (1995) model. We find that,
as long-term interest rates decrease, banks on average (across all business models) grow
larger, hold more assets in trading portfolios to offset declines in loan demand, hold more
sizeable derivative books, and, in some cases, increase leverage and decrease funding through
customer deposits. Each of these effects — increased size, leverage, complexity, and a less
stable funding base — are intuitive, but also potentially problematic from a financial stability
perspective. This corroborates the unease expressed in Yellen (2014) and Draghi (2016).

From a methodological point of view, our paper also contributes to the literature on
clustering of time series data. This literature can be divided into four strands. Static
clustering of time series refers to a setting with fixed cluster classification, i.e., each time series
is allocated to one cluster over the entire sample period. Dynamic clustering, by contrast,
allows for changes in the cluster assignments over time. Each approach can be further split
into whether the cluster-specific parameters are constant (static) or time-varying (dynamic).

Wang et al. (2013) is an example of static clustering with static parameters. They
cluster time series into different groups of autoregressive processes, where the autoregressive
parameters are constant within each cluster and cluster assignments are fixed over time.

Fruehwirth-Schnatter and Kaufmann (2008) use static clustering with elements of both
static and dynamic parameters. First, they cluster time series into different groups of re-
gression models with static parameters. Later, they generalize this to static clustering into
groups of different Hidden Markov Models (HMMs), each switching between two regression

models. The HMM can be regarded as a specific form of dynamic parameters for the underly-
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ing regression model. Their method is used in Hamilton and Owyang (2012) to differentiate
between business cycle dynamics among groups of U.S. states. Also Smyth (1996) clusters
time series into groups characterized by different Hidden Markov Models.

Creal et al. (2014) is an example of dynamic clustering with static parameters. They
develop a model for credit ratings based on market data. Their main objective is to classify
firms into different rating categories over time. They therefore allow for transitions across
clusters (dynamic clustering), while the parameters in their underlying mixture model are
kept constant.

Finally, Catania (2016) is an example of dynamic clustering with dynamic parameters.
He proposes a score-driven dynamic mixture model, which relies on score-driven updates
of almost all parameters, allowing for time-varying parameters and changing cluster assign-
ments and time-varying cluster assignment probabilities. Due to the high flexibility of the
model, a large number of observations is required over time. The application in Catania
(2016) to conditional asset return distributions typically has a sufficiently large number of
observations.

Our approach falls in the category of static clustering methods with dynamic parameters.
We use static clustering as banks do not tend to switch their business model frequently over
short periods of time; see e.g. Ayadi and Groen (2015). Also, in contrast to the application
used by for instance Catania (2016), our banking data are observed over only a moderate
number of time points 7', while the number of units N and the number of firm characteristics
D are high. Given static clustering, the properties of bank business models are unlikely to
be constant throughout the periods of market turbulence and shifts in bank regulations
experienced in our sample. We therefore require the cluster components to be characterized
by dynamic parameters using the score-driven framework of Creal et al. (2013).

Our paper also contributes to the literature on identifying bank business models. Roeng-
pitya et al. (2014), Ayadi et al. (2014), and Ayadi and Groen (2015) also use cluster analysis
to identify bank business models. Conditional on the identified clusters, the authors discuss
bank profitability trends over time, study banking sector risks and their mitigation, and

consider changes in banks’ business models in response to new regulation. Our statistical
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approach is different in that our components are not identified based on single (static) cross-
sections of year-end data. Instead, we consider a panel framework, which allows us to pool
information over time, leading to a more accurate assessment.

We proceed as follows. Section 2 presents a static and baseline dynamic finite mixture
model. We then propose extensions to incorporate time-varying covariance matrices, as well
as Student’s ¢ distributed mixture distributions, and introduce model diagnostics. Section
3 discusses the outcomes of a variety of Monte Carlo simulation experiments. Section 4
applies the model to classify European financial institutions. Section 5 studies to which
extent banks’ business models adapt to an environment of exceptionally low interest rates.

Section 6 concludes. A Web Appendix provides further technical and empirical results.

2 Statistical model

2.1 Mixture model

We consider multivariate panel data consisting of vectors y;, € RP*! of firm characteristics
for irms ¢ = 1,..., N and times ¢t = 1,...,T, where D denotes the number of observed

characteristics. We model y;, by a J-component mixture model of the form
Yit = Zi1- (Ml,t + Q},/tzez‘,m) +...+ 2 (,UJ,t + Qlj,/fei,t,J)a (1)

where 1, and 2, are the mean and covariance matrix of mixture component j = 1,...,.J at
time ¢, respectively, e;; ; is a zero-mean, D-dimensional vector of disturbances with identity
covariance matrix, and z; ; are unobserved indicators for the mixture component of firm .
In particular, if firm ¢ is in mixture component j then z;; = 1, while z;;, = 0 for k # j.
The posterior expectations of z; ; given the data can be used to classify firms into specific
mixture components later on. We define z; = (z;1, ..., 2, 7)" and assume z; has a multinomial
distribution with Pr[z;; = 1] = m; € [0,1] and m; + ... 4+ 7y = 1. Finally, we assume that
z; and e;,; are mutually, cross-sectionally, and serially uncorrelated. We specify the precise

dynamic functional form of p;+ and €2, later in this section using the score-driven dynamics
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of Creal et al. (2013). For the moment, it suffices to note that j;; and €;, will both be
functions of past data only, and therefore predetermined. Finite mixture models with static
cluster-specific parameters have been widely used in the literature. For textbook treatments,
see, e.g. McLachlan and Peel (2000) and Fruehwirth-Schnatter (2006).

To write down the likelihood of the mixture model in (1), we stack the observations up
to time ¢, y;1,...,¥Yis, into the matrix Y;; = (y;1 -+ vi0) € R*P. We also stack the
parameters characterizing each mixture component j, such as the p;,s and €2;s for all times
t, and any remaining parameters characterizing the distribution of e;,; (such as the degrees
of freedom of a Student’s t), into a parameter vector 6;( ), where  gathers all static
parameters of the model. Note that also the multinomial probabilities 7; are functions of

, 1e., m; = mj( ). However, if no confusion is caused we use the short-hand notation
and 0; for m;( ) and 6;( ), respectively. The likelihood function is given by a standard

prediction error decomposition as

log L( ) = Zlog [Z T - fj(YZ-,T;Oj)] ; (2)

J=1

where

T
fi(Yir;: 0;) = Hfj (Yie | Y1 654),
t=1

and f;(yi: | Yii—1;60;,) is the conditional distribution of y;; = p;; + Q%Qei,m given the past
data and given the (predetermined) parameters for time ¢ as gathered in 6.

Before proceeding, we note that the mixture model in (1) describes the firm characteristics
using time-invariant cluster indicators z; rather than time-varying indicators z; ;. Our choice
follows from the specific application in Section 4. Banks are unlikely to switch their business
model over limited time spans such as ours. For instance, a large universal bank is unlikely
to become a small retail lender from one year to the next, as strategy choices, distribution
channels, brand building, and clientele formation are all slowly varying economic processes.
This is why we opt for static cluster indicators. In a different empirical context, a different

modeling choice might be called for. For example, Creal et al. (2014) consider corporate
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credit ratings, which are much more likely to change over shorter periods of time, such that
some of their specifications use time-varying cluster assignments. To explicitly check whether
the assumption of fixed cluster assignments is supported by our data, we use the diagnostics
developed in Section 2.5. Our findings indicate that the vast majority of banks indeed only
belongs to one cluster for all time points.

Given our choice for static rather than dynamic cluster allocation, it becomes important
to allow for time-variation in the cluster means 41, (and possibly in the variances €2;,). Even
though banks are less likely to switch their business model, the average characteristics of
business models may change over shorter time spans, particularly if such time spans include
stressful periods as is the case in our sample. This allows us to answer questions relating
to how the properties of business models changed, and in particular whether some business
models (and if so, which) increased their risk characteristics during the low interest rate
period we study in Section 4. Such results are also important for policy makers, such as the
Single Supervisory Mechanism in Europe to decide on the riskiness of banks and on adequate

capital and liquidity levels for peer groups of banks.

2.2 EM estimation

As is common in the literature on mixture models, we do not estimate  directly by nu-
merically maximizing the log-likelihood function in (2). Instead we use the expectation
maximization (EM) algorithm to estimate the parameters; see Dempster et al. (1977) and
McLachlan and Peel (2000).* To write down the EM algorithm and formulate the score-
driven parameter dynamics for p;; and €2;; later on, we define the complete data for firm 4
as the pair (Y, r, z;). If 2z, is known, the corresponding complete data likelihood function is

given by

log Le( ) =Y z;[logm; +log f;(Yir:; 6;)]. (3)

=1 j=1

4As pointed out by a referee, newer and faster versions of the EM algorithm are available, such as the
ECM algorithm of Meng and Rubin (1993) and the ECME algorithm of Liu and Rubin (1994). All of these
converge to the same optimum. Computation time for the EM was not a major issue in our setting, with
the algorithm typically converging in 15 iterations. We therefore leave such extensions for future work.
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Because z; is unobserved, however, (3) cannot be maximized directly. Following Dempster
et al. (1977), we instead maximize its conditional expectation over z; given the observed data
Yr = (Yir,. .., Yyr) and some initial or previously determined parameter value *~=1 i.e.,

we maximize with respect to  the function

Q( ; " =ElogL( )|Yr V]
N J
=E ZZZJ [log ; + log f;(Yir; 0;)] ‘ Yr; (’“‘1)]
i=1 j=1
N J
=S N Play=1| Y V] logm +log £;(Yir:6)].  (4)
i=1 j=1

The conditionally expected likelihood (4) can be optimized iteratively by alternately updat-
ing the conditional expectation of the component indicators z; (‘E-Step’) and subsequently
maximizing the remaining part of the function with respect to  (‘M-Step’).

In the E-Step, the conditional component indicator probabilities are updated using

(k=1) . p(k=1) (k=1) . pk=1)
S Y ) A . L M W Sl /LS v L e A
5] > f(.Y’;,T) (k—l)) Zi:1 W](lk‘fl)fh<Yi7T; Hglk‘fl))

We again point out that the 7‘1-(’];-)8 do not depend on time, as banks in our application in
Section 4 are statically assigned to clusters. An alternative would be to use dynamic cluster

k-1

assignments as in Catania (2016), in which case the densities f;(Y;r; 0( )) above would

have to be replaced by their time ¢ counterparts f;(yi: | Yii—1 ; O(k_l)) and would result

Jit
in time-specific posterior probabilities Z(l;)t; see also the diagnostic statistics introduced in
Section 2.5.

Once the 7' ) are updated, we move to the M-Step. Maximizing Q( ; *~V) with

respect to m; under the constraint 7 4+ ... 4+ 7; = 1, we obtain

1 L .
i NZTi(’j)’ j=1,...,J (6)

The optimization of Q( ; *~1) with respect to the remaining parameters in  can some-
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times be done analytically, for instance in the case of the normal finite mixture model with

static location p;; = p; and scale 2, = ;. Otherwise, numerical maximization methods

need to be used. The E-step and M-step are iterated until the difference L(  *+D)—L( *)

has converged. The EM algorithm increases the likelihood on each step, and convergence

typically occurs within 15 iterations in our application. After convergence, when  has been
(

estimated, we can use the final Ti,];-) to assign banks to clusters. We do so by assigning bank

1 to cluster 57 which has the highest 7

;; across j.

2.3 Normal mixture with time-varying means

As explained in Section 2.1, it is important to allow for time-varying cluster means. We first
do so for the case of a normal mixture with time varying means and constant covariance
matrices. We set fj(yit | Yii—1;01) = O(Yir; ptje, 25), where ¢( -5 p, ) denotes a multi-
variate normal density function with mean p and variance 2. In this section, we introduce
a version of the score-driven approach of Creal et al. (2013) to the parameter dynamics of
pj.; compare also Harvey (2013) and Creal et al. (2014). Rather than using the score of the
log-density as in Creal et al. (2013), however, we use the score of the EM criterion in (4) to
drive the parameter dynamics. Our simulation section shows that the score-driven dynamics
can fit various patterns for the cluster means, both in correctly specified and mis-specified
settings.

For simplicity and parsimony, we consider the integrated score-driven dynamics as dis-

cussed in Lucas and Zhang (2016),

i1 = Myt Als,uj,tv (7)

where A; = A;( ) is a diagonal matrix that depends on the unknown parameter vector

and where s, is the scaled first derivative of the time ¢ EM objective function with respect

ECB Working Paper 2084, June 2017 12



to pj¢. The score is given by

N J T
0 k
Vi = Brie (E > 7y [logm 4> log ¢y e, ) )

P N J B T
k _
= (Z Z Ti(,j) logm; — %T log [2m€Y;[ — %Z(yi,t - Mj,t)le Hyir — Mj,t)])

i=1 j=1 t=1

N
=0t > (Wi — o). (8)

To scale our score for p;;, we compute the inverse of the expected negative Hessian
under mixture component j. In particular, we take the derivative of (8) with respect to
the transpose of j;;, switch sign, and compute the inverse, thus obtain a scaling matrix

Q;/ SN Tisl;). This yields a corresponding scaled score update of the form

Zi\i Tii(Yie — Mit)
M1 = fe + Ax - v - = (9)

This updating mechanism is highly intuitive: the component means are updated by the
prediction errors for that component, accounting for the posterior probabilities that the

observation was drawn from that same component. For example, if the posterior probability

TZE];) that y;; comes from component j is negligible, the update of y;; does not depend on

the observation of firm i.

We note that we do not scale the score by the inverse Fisher information matrix as
suggested in for instance Creal et al. (2013). So far, there is no optimality theory for the
choice of the scale for the score, and different proposals can be found in the literature.
Computing the information matrix for the mixture model is hard, particularly if we take

into account that also T(k)

;i 1s a function of y;,. We can show, however, that our proposed

way of scaling the score collapses to the inverse information matrix if the mixture components
are sufficiently far apart.

All static parameters can now be estimated using the EM-algorithm. Starting from an

(k—1 (k—1) (k—1) (k—1)
5,1 3,2 s My

initial ) and an initial mean g , We compute using the recursion
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(9). We compute the posterior probabilities as

1) T k—1) ~(k—1
) Ht:1 o (yi,ta Ngt Q( )>
pa— k—1) T (k—1
thl ﬂ-}(L : Ht:l ¢ (yi,t, Hht )Q ))

Next, the M-Step maximizes

N T D
Z Z Z Tz(,]; —510g(127Y ) = 5(Yir — 150) % (Yiw — 1)) 5 (11)
i=1 t=1 j=1

with respect to A; and €2;. The initial values 1, can also be estimated if J and D are not

too large. Otherwise, the number of parameters becomes infeasible. Alternatively, one can

initialize the time-varying means s, by the 7; ;~weighted average of the first cross-section(s).

Given the values of J and D in our empirical study, we opt for this latter approach. We set

;1 equal to the weighted unconditional sample average in the simulation study, and to the

weighted average of the first cross-section in the empirical application. Given p;; and A,

the optimization with respect to {2; can be done analytically. The optimization with respect

to Ay has to be carried out numerically.
The E-step and M-step are iterated until convergence. To start up the EM algorithm,

we initialize the weights 7, ; randomly. To robustify the optimization algorithm, we use a

large number of random starting values and pick the highest value for the final converged

criterion function.

2.4 Extensions
2.4.1 Time-varying component covariance matrices

This section derives the scaled score updates for time-varying component covariance matrices
2+ If we also want to endow the time-varying covariance matrices with integrated score
dynamics, we have

Qj,t—i—l = Qj,t + Ay 8045 (12)
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where sq,, is again defined as the scaled first partial derivative of the expected likelihood
function with respect to €2;,. Following equation (8), the unscaled score with respect to €2,
is

= Z Tij k)Q (Wi — 1) (Yie — 1152) — Qja] - (13)

Taking the total differential of this expression, and subsequently taking expectations E;|- ]

conditional on mixture component j, we obtain

3B Z (A5 (Wie — 117.0) Wis — 150) Ui+ Ut Y — 117.2) Wie — p15.0) A7 — Q5 )

N N
3 it = (S0 oo ”
=1 =1

Vectorizing (14), we obtain —(3 SV Ti(’l;))(Qj,t @8, 4) tvec(dQ;,), where vec(+) concatenates
the columns of a matrix into a column vector, and where the negative inverse of the matrix in
front of vec(d€2;,) is our scaling matrix to correct for the curvature of the score. Multiplying

the vectorized version of (13) by this scaling matrix, we obtain the scaled score

-1

-1
vec(sq,, ( Z > (251 ®8y4) - vec VQ (Z > - vec (2Qj’tVijtQj7t) &

N
Z@ 1 z(g) (Y — th)(yz',t - Mj,t) - Qj,t]
N _(k :
din1 Ti(,j)

S, = (15)

The estimation of the model can be carried out using the EM algorithm as before, replacing

Q; by €;, in equations (10)—(11).

2.4.2 Student’s t distributed mixture

This section robustifies the dynamic finite mixture model by considering panel data that are
generated by mixtures of multivariate Student’s ¢ distributions. Assuming a multivariate
normal mixture is not always appropriate. For example, extreme tail observations can easily
occur in the analysis of accounting ratios when the denominator is close to zero, implying

pronounced changes from negative to positive values.
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To use the EM-algorithm for mixtures of Student’s ¢ distributions, we use the densities

I'((v; + D)/2)
['(v;/2) |mv;€2; [/

_ —(v+D)/2
[i(Yi;01) = (1 + (Yir — pie) (V) (yir — Mj,t)) D2 (16)

Both the E-steps and the M-steps of the algorithm are unaffected save for the fact that we
use Student’s ¢ rather than Gaussian densities. The main difference follows for the dynamic
models, where the score steps now take a different form. Using (16), the scores for the

location parameter 1, and scale matrix {2;; are

N
_ k
Vuj,t = Qﬁl Z Ti(,j) Wi, 4t (yi,t - Mj,t) ) (17)
i=1
N
k) ~y— _
Va,, = %Z Ti(,j)Qj, Wige - Yie — M) Yz — 150) — Qe O/ (18)
i=1
w; e = (1+ Vj_l D) /(1 + Vj_l (Yiy — ,uj7t), Q;tl (Yir — ,Mj,t)) . (19)

The main difference between the scores of the Student’s ¢ and the Gaussian case is the
presence of the weights w; ;;. These weights provide the model with a robustness feature:
observations y; ; that are outlying given the fat-tailed nature of the Student’s ¢ density receive
a reduced impact on the location and volatility dynamics by means of a lower value for wj ; ;
compare Creal et al. (2011, 2013) and Harvey (2013). We use the same scale matrices for the
score as in Sections 2.3 and 2.4.1. For the location parameter, which is our main parameter
of interest, the scaling matrix for the Student’s ¢ case is proportional to that for the normal,
such that any differences are included in the estimation of the smoothing parameter A;. We

obtain the scaled scores

Suie = (Z Wit yi,t —Mj,t)>/ (Z TZ(§)> ) (20)
5Q;, = (Z (ww, (Yir — 150) (Y — fje) — ]t>>/ (Z > . (21)

The intuition is the same as for the Gaussian case, except for the fact that the scaled score

steps for p;, and €2}, are re-descending to zero and bounded, respectively, if y;; is extremely
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far from f;;. Also note that for v; — oo we see in (19) that w; ;; — 1, such that we recover

the expressions for the Gaussian mixture model.

2.4.3 Explanatory covariates

The score-driven dynamics for component-specific time-varying parameters can be extended
further to include contemporaneous or lagged economic variables as additional conditioning
variables. For example, a particularly low interest rate environment may push financial
institutions, overall or in part, to take more risk or change their asset composition; see e.g.
Hannoun (2015), Abbassi et al. (2016), and Heider et al. (2017). Using additional yield
curve-related conditioning variables allows us to incorporate and test for such effects. Let
X; be a vector of observed covariates, and B; = B;( ) a matrix of unknown coefficients
that need to be estimated. In the case of a Student’s ¢ distributed mixture, the score-driven

updating scheme then changes slightly to

k
Zi]\il Tisj)wi,j,t(yz‘,t - Mj,t)
N _(k
D im1 Ti(,j)

[ e+1 = My + Ax - + B; - X (22)
Again, in the case of a Gaussian mixture, w; j; = 1. The covariates can also be made firm

and cluster component specific, i.e., Xj ;.

2.5 Diagnostics: Stability of cluster allocation over time

The assumption that component membership is time-invariant implies that pooling infor-
mation over ¢t = 1,...,T is optimal. This is of substantial help to robustly classify each
unit 7. Although our sample covers only 32 quarters (8 years), it is clear that switches in
component membership become more likely as the sample period grows. In such a case, we
have to trade off estimation efficiency against estimation bias.

To check whether component probabilities 7; ; are time-varying, we consider the point-
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in-time diagnostic statistic

ﬁjfj (yz‘,t K,tfl; ej,t( A ))
Z}{:l T tfn (yi,t K,t—l; Oh,t( ’ ))

: (23)

Tijlt =

which can be viewed as the time ¢ posterior probability that firm ¢ belongs to cluster compo-
nent j, computed using the estimates under the null of time-invariant cluster assignments.
A filtered counterpart using information from time 1 to ¢ can be constructed by replacing
[ilyie | Yieo1;0,4( ’ )) by Hi:l [itis | Yis—1;0;s( ’ ). If 7, ¢ is close to 1 or O for all ¢
for a specific (i, 7), firm ¢ is unlikely to have switched clusters. Otherwise, switches may be
a concern. We discuss time series plots of 7; ;; for diagnostic purposes in our application in

Section 4.

3 Simulation study

3.1 Simulation design

This section investigates the ability of our score-driven dynamic mixture model to simulta-
neously i) correctly classify a data set into distinct components, and i) recover the dynamic
cluster means over time. In addition, we investigate the performance of several model selec-
tion criteria from the literature in detecting the correct model when the number of clusters is
unknown. In all cases, we pay particular attention to the sensitivity of the EM algorithm to
the (dis)similarity of the clusters, the number of units per cluster, and the impact of model
misspecification.