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Abstract

We propose a novel observation-driven �nite mixture model for the study of bank-

ing data. The model accommodates time-varying component means and covariance

matrices, normal and Student’s t distributed mixtures, and economic determinants of

time-varying parameters. Monte Carlo experiments suggest that units of interest can

be classi�ed reliably into distinct components in a variety of settings. In an empirical

study of 208 European banks between 2008Q1{2015Q4, we identify six business model

components and discuss how their properties evolve over time. Changes in the yield

curve predict changes in average business model characteristics.

Keywords: bank business models; clustering; �nite mixture model; score-driven

model; low interest rates.

JEL classification: G21, C33.
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Non-technical summary

Banks are highly heterogenous, differing widely in terms of size, complexity, organiza-

tion, activities, funding choices, and geographical reach. Understanding this diversity is

of key importance, for example, for the study of risks acting upon and originating from

the financial sector, for impact assessments of unconventional monetary policies, as well as

for the benchmarking of banks to appropriate peer groups for micro-prudential supervisory

purposes.

This paper proposes a novel statistical model for the study of banking data. The dynamic

framework allows us to robustly classify (cluster) banks into approximately homogeneous

groups. The model accommodates time-varying component means and covariance matrices,

normal and Student’s t distributed mixtures, as well as economic determinants of time-

varying parameters. Extensive Monte Carlo experiments suggest that our model is able to

reliably classify banks into distinct mixture components, as well as to simultaneously infer

the relevant time-varying parameters.

In an empirical study of 208 European banks between 2008Q1–2015Q4, we identify six

business model components and discuss how these adjust to post-crisis financial develop-

ments. We distinguish A) large universal banks, including globally systemically important

banks (G-SIBs), B) international diversified lends, C) fee-based banks, D) domestic diver-

sified lenders, E) domestic retail lenders, and F) small international banks. The global

financial crisis between 2008–2009 had a differential impact on banks with different business

models. We also observe such differences across business model components during the more

recent euro area sovereign debt crisis between 2010–2012.

In addition, we study how banks’ business models adapt to changes in yield curve factors,

specifically the level and slope, as yields fall to approximately zero at the end of our sample.

The yield curve factors are extracted from AAA-rated euro area sovereign bonds based on a

Svensson (1994) model. We find that, as long-term interest rates decrease, banks on average

(across all business models) tend to grow larger, hold more assets in trading portfolios to

offset declines in loan demand, hold more sizeable derivative books, and, in some cases,
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increase leverage and decrease funding through customer deposits. The direction of these

effects – increased size, leverage, complexity, and a less stable funding base – are potentially

problematic and need to be assessed from a financial stability perspective.
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1 Introduction

Banks are highly heterogeneous, differing widely in terms of size, complexity, organization,

activities, funding choices, and geographical reach. Understanding this diversity is of key

importance, for example, for the study of risks acting upon and originating from the financial

sector, for impact assessments of unconventional monetary policies and financial regulations,

as well as for the benchmarking of banks to appropriate peer groups for supervisory pur-

poses.1 While there is broad agreement that financial institutions suffer in an environment

of extremely low interest rates, see e.g. Nouy (2016), it is less clear which types of banks

(business models) are affected the most. A study of banks’ business models at low interest

rates provides insight into the overall diversity of business models, the strategies adopted by

individual institutions, and which types of banks are impacted the most by time variation

in the yield curve.2 We study these questions in a novel modeling framework.

This paper proposes an observation-driven finite mixture model for the analysis of high-

dimensional banking data. The framework accommodates time-varying mean and covariance

parameters and allows us to robustly cluster banks into approximately homogeneous groups.

We first present a simple baseline mixture model for normally distributed data with time-

varying component means, and subsequently consider extensions to time-varying covariance

matrices, Student’s t distributed mixture densities, and economic predictors of time-varying

parameters. We apply our modeling framework to a multivariate panel of N = 208 European

banks between 2008Q1–2015Q4, i.e. over T = 32 quarters, considering D = 13 bank-level

indicator variables for J groups of similar banks. We thus track banking sector data through

1For example, the assessment of the viability and the sustainability of a bank’s business model plays a
pronounced role in the European Central Bank’s new Supervisory Review and Examination Process (SREP)
for Signi�cant Institutions within its Single Supervisory Mechanism; see SSM (2016). Similar procedures
exist in other jurisdictions.

2An improved understanding of the �nancial stability consequences of low-for-long interest rates is a top
policy priority. For example, Fed Chair Yellen (2014) pointed to \... the potential for low interest rates
to heighten the incentives of �nancial market participants to reach for yield and take on risk, and ... the
limits of macroprudential measures to address these and other �nancial stability concerns." Similarly, ECB
President Draghi (2016) explained that \One particular challenge has arisen across a large part of the world.
That is the extremely low level of nominal interest rates. ... Very low levels are not innocuous. They put
pressure on the business model[s] of �nancial institutions ... by squeezing net interest income. And this
comes at a time when pro�tability is already weak, when the sector has to adjust to post-crisis deleveraging
in the economy, and when rapid changes are taking place in regulation."
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the 2008–2009 global financial crisis, the 2010–2012 euro area sovereign debt crisis, as well

as the relatively calmer but persistent low-interest rate environment of the post-crises period

between 2013–2015. We identify J = 6 business model components and discuss how these

adjust to changes in the yield curve.

In our finite mixture model, all time-varying parameters are driven by the score of the

local (time t) objective function using the so-called Generalized Autoregressive Score (GAS)

approach developed by Creal et al. (2013); see also Harvey (2013). In this setting, the time-

varying parameters are perfectly predictable one step ahead. This feature makes the model

observation-driven in the terminology of Cox (1981). The likelihood is known in closed

form through a standard prediction error decomposition, facilitating parameter estimation

via likelihood-based expectation-maximization (EM) procedures. Our approach extends the

standard score-driven approach of Creal et al. (2013) by using the scores of the EM-based

criterion function rather than that of the usual predictive likelihood function.

Extensive Monte Carlo experiments suggest that our model is able to reliably classify

units of interest into distinct mixture components, as well as to simultaneously infer the

relevant component-specific time-varying parameters. In our simulations, the cluster classi-

fication is perfect for sufficiently large distances between the time-varying cluster means and

sufficiently informative signals relative to the variance of the noise terms.3 This holds under

correct model specification as well as under specific forms of model mis-specification. As the

simulated data become less informative or the time-varying cluster means are closer together,

the share of correct classifications decreases, but generally remains high. Estimation fit and

the share of correct classifications decrease further if we incorrectly assume a thin-tailed

mixture specification when the data are generated by a fat-tailed mixture distribution. As

a result, robust models based on fat-tailed mixtures are appropriate for the fat-tailed bank

accounting ratios in our empirical sample.

We apply our model to classify European banks into distinct business model components.

We distinguish A) large universal banks, including globally systemically important banks

(G-SIBs), B) international diversified lenders, C) fee-based banks, D) domestic diversified

3We use the terms ‘component’, ‘mixture component’ and ‘cluster’ interchangeably.
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lenders, E) domestic retail lenders, and F) small international banks. The similarities and

differences between these components are discussed in detail in the main text. Based on

our component mean estimates and business model classification, we find that the global

financial crisis between 2008–2009 affected banks with different business models differently.

This is in line with findings by Altunbas et al. (2011) and Chiorazzo et al. (2016), who study

U.S.-based institutions.

In addition, we study how banks’ business models adapt to changes in yield curve factors,

specifically level and slope of the yield curve. The yield curve factors are extracted from

AAA-rated euro area sovereign bonds based on a Svensson (1995) model. We find that,

as long-term interest rates decrease, banks on average (across all business models) grow

larger, hold more assets in trading portfolios to offset declines in loan demand, hold more

sizeable derivative books, and, in some cases, increase leverage and decrease funding through

customer deposits. Each of these effects – increased size, leverage, complexity, and a less

stable funding base – are intuitive, but also potentially problematic from a financial stability

perspective. This corroborates the unease expressed in Yellen (2014) and Draghi (2016).

From a methodological point of view, our paper also contributes to the literature on

clustering of time series data. This literature can be divided into four strands. Static

clustering of time series refers to a setting with fixed cluster classification, i.e., each time series

is allocated to one cluster over the entire sample period. Dynamic clustering, by contrast,

allows for changes in the cluster assignments over time. Each approach can be further split

into whether the cluster-specific parameters are constant (static) or time-varying (dynamic).

Wang et al. (2013) is an example of static clustering with static parameters. They

cluster time series into different groups of autoregressive processes, where the autoregressive

parameters are constant within each cluster and cluster assignments are fixed over time.

Fruehwirth-Schnatter and Kaufmann (2008) use static clustering with elements of both

static and dynamic parameters. First, they cluster time series into different groups of re-

gression models with static parameters. Later, they generalize this to static clustering into

groups of different Hidden Markov Models (HMMs), each switching between two regression

models. The HMM can be regarded as a specific form of dynamic parameters for the underly-
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ing regression model. Their method is used in Hamilton and Owyang (2012) to differentiate

between business cycle dynamics among groups of U.S. states. Also Smyth (1996) clusters

time series into groups characterized by different Hidden Markov Models.

Creal et al. (2014) is an example of dynamic clustering with static parameters. They

develop a model for credit ratings based on market data. Their main objective is to classify

firms into different rating categories over time. They therefore allow for transitions across

clusters (dynamic clustering), while the parameters in their underlying mixture model are

kept constant.

Finally, Catania (2016) is an example of dynamic clustering with dynamic parameters.

He proposes a score-driven dynamic mixture model, which relies on score-driven updates

of almost all parameters, allowing for time-varying parameters and changing cluster assign-

ments and time-varying cluster assignment probabilities. Due to the high flexibility of the

model, a large number of observations is required over time. The application in Catania

(2016) to conditional asset return distributions typically has a sufficiently large number of

observations.

Our approach falls in the category of static clustering methods with dynamic parameters.

We use static clustering as banks do not tend to switch their business model frequently over

short periods of time; see e.g. Ayadi and Groen (2015). Also, in contrast to the application

used by for instance Catania (2016), our banking data are observed over only a moderate

number of time points T , while the number of units N and the number of firm characteristics

D are high. Given static clustering, the properties of bank business models are unlikely to

be constant throughout the periods of market turbulence and shifts in bank regulations

experienced in our sample. We therefore require the cluster components to be characterized

by dynamic parameters using the score-driven framework of Creal et al. (2013).

Our paper also contributes to the literature on identifying bank business models. Roeng-

pitya et al. (2014), Ayadi et al. (2014), and Ayadi and Groen (2015) also use cluster analysis

to identify bank business models. Conditional on the identified clusters, the authors discuss

bank profitability trends over time, study banking sector risks and their mitigation, and

consider changes in banks’ business models in response to new regulation. Our statistical
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approach is different in that our components are not identified based on single (static) cross-

sections of year-end data. Instead, we consider a panel framework, which allows us to pool

information over time, leading to a more accurate assessment.

We proceed as follows. Section 2 presents a static and baseline dynamic finite mixture

model. We then propose extensions to incorporate time-varying covariance matrices, as well

as Student’s t distributed mixture distributions, and introduce model diagnostics. Section

3 discusses the outcomes of a variety of Monte Carlo simulation experiments. Section 4

applies the model to classify European financial institutions. Section 5 studies to which

extent banks’ business models adapt to an environment of exceptionally low interest rates.

Section 6 concludes. A Web Appendix provides further technical and empirical results.

2 Statistical model

2.1 Mixture model

We consider multivariate panel data consisting of vectors yi,t ∈ RD×1 of firm characteristics

for firms i = 1, . . . , N and times t = 1, . . . , T , where D denotes the number of observed

characteristics. We model yi,t by a J-component mixture model of the form

yi,t = zi,1 ·
(
µ1,t + Ω

1/2
1,t ei,t,1

)
+ . . .+ zi,J ·

(
µJ,t + Ω

1/2
J,t ei,t,J

)
, (1)

where µj,t and Ωj,t are the mean and covariance matrix of mixture component j = 1, . . . , J at

time t, respectively, ei,t,j is a zero-mean, D-dimensional vector of disturbances with identity

covariance matrix, and zi,j are unobserved indicators for the mixture component of firm i.

In particular, if firm i is in mixture component j then zi,j = 1, while zi,k = 0 for k 6= j.

The posterior expectations of zi,j given the data can be used to classify firms into specific

mixture components later on. We define zi = (zi,1, . . . , zi,J)′ and assume zi has a multinomial

distribution with Pr[zi,j = 1] = πj ∈ [0, 1] and π1 + . . . + πJ = 1. Finally, we assume that

zi and ei,t,j are mutually, cross-sectionally, and serially uncorrelated. We specify the precise

dynamic functional form of µj,t and Ωj,t later in this section using the score-driven dynamics
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of Creal et al. (2013). For the moment, it suffices to note that µj,t and Ωj,t will both be

functions of past data only, and therefore predetermined. Finite mixture models with static

cluster-specific parameters have been widely used in the literature. For textbook treatments,

see, e.g. McLachlan and Peel (2000) and Fruehwirth-Schnatter (2006).

To write down the likelihood of the mixture model in (1), we stack the observations up

to time t, yi,1, . . . ,yi,t, into the matrix Yi,t = (yi,1 · · · yi,t)′ ∈ Rt×D. We also stack the

parameters characterizing each mixture component j, such as the µj,ts and Ωj,ts for all times

t, and any remaining parameters characterizing the distribution of ei,t,j (such as the degrees

of freedom of a Student’s t), into a parameter vector θj(�), where � gathers all static

parameters of the model. Note that also the multinomial probabilities πj are functions of

�, i.e., πj = πj(�). However, if no confusion is caused we use the short-hand notation πj

and θj for πj(�) and θj(�), respectively. The likelihood function is given by a standard

prediction error decomposition as

logL(�) =
N∑
i=1

log

[
J∑
j=1

πj · fj(Yi,T ;θj)

]
, (2)

where

fj(Yi,T ;θj) =
T∏
t=1

fj (yi,t | Yi,t−1 ; θj,t) ,

and fj(yi,t | Yi,t−1;θj,t) is the conditional distribution of yi,t = µj,t + Ω
1/2
j,t ei,t,j given the past

data and given the (predetermined) parameters for time t as gathered in θj,t.

Before proceeding, we note that the mixture model in (1) describes the firm characteristics

using time-invariant cluster indicators zi rather than time-varying indicators zi,t. Our choice

follows from the specific application in Section 4. Banks are unlikely to switch their business

model over limited time spans such as ours. For instance, a large universal bank is unlikely

to become a small retail lender from one year to the next, as strategy choices, distribution

channels, brand building, and clientele formation are all slowly varying economic processes.

This is why we opt for static cluster indicators. In a different empirical context, a different

modeling choice might be called for. For example, Creal et al. (2014) consider corporate
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credit ratings, which are much more likely to change over shorter periods of time, such that

some of their specifications use time-varying cluster assignments. To explicitly check whether

the assumption of fixed cluster assignments is supported by our data, we use the diagnostics

developed in Section 2.5. Our findings indicate that the vast majority of banks indeed only

belongs to one cluster for all time points.

Given our choice for static rather than dynamic cluster allocation, it becomes important

to allow for time-variation in the cluster means µj,t (and possibly in the variances Ωj,t). Even

though banks are less likely to switch their business model, the average characteristics of

business models may change over shorter time spans, particularly if such time spans include

stressful periods as is the case in our sample. This allows us to answer questions relating

to how the properties of business models changed, and in particular whether some business

models (and if so, which) increased their risk characteristics during the low interest rate

period we study in Section 4. Such results are also important for policy makers, such as the

Single Supervisory Mechanism in Europe to decide on the riskiness of banks and on adequate

capital and liquidity levels for peer groups of banks.

2.2 EM estimation

As is common in the literature on mixture models, we do not estimate � directly by nu-

merically maximizing the log-likelihood function in (2). Instead we use the expectation

maximization (EM) algorithm to estimate the parameters; see Dempster et al. (1977) and

McLachlan and Peel (2000).4 To write down the EM algorithm and formulate the score-

driven parameter dynamics for µj,t and Ωj,t later on, we define the complete data for firm i

as the pair (Yi,T , zi). If zi is known, the corresponding complete data likelihood function is

given by

logLc(�) =
N∑
i=1

J∑
j=1

zi,j [log πj + log fj(Yi,T ;θj)] . (3)

4As pointed out by a referee, newer and faster versions of the EM algorithm are available, such as the
ECM algorithm of Meng and Rubin (1993) and the ECME algorithm of Liu and Rubin (1994). All of these
converge to the same optimum. Computation time for the EM was not a major issue in our setting, with
the algorithm typically converging in 15 iterations. We therefore leave such extensions for future work.
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Because zi is unobserved, however, (3) cannot be maximized directly. Following Dempster

et al. (1977), we instead maximize its conditional expectation over zi given the observed data

YT = (Y1,T , . . . ,YN,T ) and some initial or previously determined parameter value �(k−1), i.e.,

we maximize with respect to � the function

Q(�; �(k−1)) = E
[
logLc(�)

∣∣ YT ; �(k−1)
]

= E

[
N∑
i=1

J∑
j=1

zi,j [log πj + log fj(Yi,T ;θj)]

∣∣∣∣∣ YT ; �(k−1)

]

=
N∑
i=1

J∑
j=1

P
[
zi,j = 1

∣∣ YT ; �(k−1)
]

[log πj + log fj(Yi,T ;θj)] . (4)

The conditionally expected likelihood (4) can be optimized iteratively by alternately updat-

ing the conditional expectation of the component indicators zi (‘E-Step’) and subsequently

maximizing the remaining part of the function with respect to � (‘M-Step’).

In the E-Step, the conditional component indicator probabilities are updated using

τ
(k)
i,j := P[zi,j = 1 | YT ,�(k−1)] =

π
(k−1)
j fj(Yi,T ;θ

(k−1)
j )

f(Yi,T ; �(k−1))
=

π
(k−1)
j fj(Yi,T ;θ

(k−1)
j )∑J

h=1 π
(k−1)
h fh(Yi,T ;θ

(k−1)
h )

. (5)

We again point out that the τ
(k)
i,j s do not depend on time, as banks in our application in

Section 4 are statically assigned to clusters. An alternative would be to use dynamic cluster

assignments as in Catania (2016), in which case the densities fj(Yi,T ;θ
(k−1)
j ) above would

have to be replaced by their time t counterparts fj(yi,t | Yi,t−1 ; θ
(k−1)
j,t ) and would result

in time-specific posterior probabilities τ
(k)
i,j,t; see also the diagnostic statistics introduced in

Section 2.5.

Once the τ
(k)
i,j s are updated, we move to the M-Step. Maximizing Q(�; �(k−1)) with

respect to πj under the constraint π1 + . . .+ πJ = 1, we obtain

π
(k)
j =

1

N

N∑
i=1

τ
(k)
i,j , j = 1, . . . , J. (6)

The optimization of Q(�; �(k−1)) with respect to the remaining parameters in � can some-
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times be done analytically, for instance in the case of the normal finite mixture model with

static location µj,t ≡ µj and scale Ωj,t ≡ Ωj. Otherwise, numerical maximization methods

need to be used. The E-step and M-step are iterated until the difference L(�(k+1))−L(�(k))

has converged. The EM algorithm increases the likelihood on each step, and convergence

typically occurs within 15 iterations in our application. After convergence, when � has been

estimated, we can use the final τ
(k)
i,j to assign banks to clusters. We do so by assigning bank

i to cluster j which has the highest τ
(k)
i,j across j.

2.3 Normal mixture with time-varying means

As explained in Section 2.1, it is important to allow for time-varying cluster means. We first

do so for the case of a normal mixture with time varying means and constant covariance

matrices. We set fj(yi,t | Yi,t−1;θj,t) = φ(yi,t;µj,t,Ωj), where φ( · ;µ,Ω) denotes a multi-

variate normal density function with mean µ and variance Ω. In this section, we introduce

a version of the score-driven approach of Creal et al. (2013) to the parameter dynamics of

µj,t; compare also Harvey (2013) and Creal et al. (2014). Rather than using the score of the

log-density as in Creal et al. (2013), however, we use the score of the EM criterion in (4) to

drive the parameter dynamics. Our simulation section shows that the score-driven dynamics

can fit various patterns for the cluster means, both in correctly specified and mis-specified

settings.

For simplicity and parsimony, we consider the integrated score-driven dynamics as dis-

cussed in Lucas and Zhang (2016),

µj,t+1 = µj,t + A1sµj,t , (7)

where A1 = A1(�) is a diagonal matrix that depends on the unknown parameter vector �,

and where sµj,t is the scaled first derivative of the time t EM objective function with respect
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to µj,t. The score is given by

∇µj,t =
∂

∂µj,t

(
N∑
i=1

J∑
j=1

τ
(k)
i,j

[
log πj +

T∑
t=1

log φ(yi,t;µj,t,Ωj)

])

=
∂

∂µj,t

(
N∑
i=1

J∑
j=1

τ
(k)
i,j

[
log πj − 1

2
T log |2πΩj| − 1

2

T∑
t=1

(yi,t − µj,t)′Ω−1
j (yi,t − µj,t)

])

= Ω−1
j

N∑
i=1

τ
(k)
i,j (yi,t − µj,t) . (8)

To scale our score for µj,t, we compute the inverse of the expected negative Hessian

under mixture component j. In particular, we take the derivative of (8) with respect to

the transpose of µj,t, switch sign, and compute the inverse, thus obtain a scaling matrix

Ωj/
∑N

i=1 τ
(k)
i,j . This yields a corresponding scaled score update of the form

µj,t+1 = µj,t + A1 ·
∑N

i=1 τi,j(yi,t − µj,t)∑N
i=1 τi,j

. (9)

This updating mechanism is highly intuitive: the component means are updated by the

prediction errors for that component, accounting for the posterior probabilities that the

observation was drawn from that same component. For example, if the posterior probability

τ
(k)
i,j that yi,t comes from component j is negligible, the update of µj,t does not depend on

the observation of firm i.

We note that we do not scale the score by the inverse Fisher information matrix as

suggested in for instance Creal et al. (2013). So far, there is no optimality theory for the

choice of the scale for the score, and different proposals can be found in the literature.

Computing the information matrix for the mixture model is hard, particularly if we take

into account that also τ
(k)
i,j is a function of yi,t. We can show, however, that our proposed

way of scaling the score collapses to the inverse information matrix if the mixture components

are sufficiently far apart.

All static parameters can now be estimated using the EM-algorithm. Starting from an

initial �(k−1) and an initial mean µ
(k−1)
j,1 , we compute µ

(k−1)
j,2 , . . . , µ

(k−1)
jT using the recursion
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(9). We compute the posterior probabilities as

τ
(k)
i,j =

π
(k−1)
j

∏T
t=1 φ

(
yi,t;µ

(k−1)
j,t ,Ω

(k−1)
j

)
∑J

h=1 π
(k−1)
h

∏T
t=1 φ

(
yi,t;µ

(k−1)
ht Ω

(k−1)
h

) . (10)

Next, the M-Step maximizes

N∑
i=1

T∑
t=1

D∑
j=1

τ
(k)
i,j

[
−1

2
log(|2πΩj|)− 1

2
(yi,t − µj,t)′Ω−1

j (yi,t − µj,t)
]
, (11)

with respect to A1 and Ωj. The initial values µj,1 can also be estimated if J and D are not

too large. Otherwise, the number of parameters becomes infeasible. Alternatively, one can

initialize the time-varying means µj,1 by the τi,j-weighted average of the first cross-section(s).

Given the values of J and D in our empirical study, we opt for this latter approach. We set

µj,1 equal to the weighted unconditional sample average in the simulation study, and to the

weighted average of the first cross-section in the empirical application. Given µj,1 and A1,

the optimization with respect to Ωj can be done analytically. The optimization with respect

to A1 has to be carried out numerically.

The E-step and M-step are iterated until convergence. To start up the EM algorithm,

we initialize the weights τi,j randomly. To robustify the optimization algorithm, we use a

large number of random starting values and pick the highest value for the final converged

criterion function.

2.4 Extensions

2.4.1 Time-varying component covariance matrices

This section derives the scaled score updates for time-varying component covariance matrices

Ωj,t. If we also want to endow the time-varying covariance matrices with integrated score

dynamics, we have

Ωj,t+1 = Ωj,t + A2 sΩj,t
, (12)
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where sΩj,t
is again defined as the scaled first partial derivative of the expected likelihood

function with respect to Ωj,t. Following equation (8), the unscaled score with respect to Ωj,t

is

∇Ωj,t
= 1

2

N∑
i=1

τ
(k)
i,j Ω−1

j,t [(yi,t − µj,t)(yi,t − µj,t)′ − Ωj,t] Ω−1
j,t . (13)

Taking the total differential of this expression, and subsequently taking expectations Ej[ · ]

conditional on mixture component j, we obtain

1
2

Ej

[
N∑
i=1

τ
(k)
i,j

(
dΩ−1

j,t (yi,t − µj,t)(yi,t − µj,t)′Ω−1
j,t + Ω−1

j,t (yi,t − µj,t)(yi,t − µj,t)′dΩ−1
j,t − dΩ−1

j,t

)]
=

1
2

N∑
i=1

τ
(k)
i,j dΩ−1

j,t = −

(
N∑
i=1

1
2
τ

(k)
i,j

)
Ω−1
j,t dΩj,t Ω−1

j,t . (14)

Vectorizing (14), we obtain −(1
2

∑N
i=1 τ

(k)
i,j )(Ωj,t⊗Ωj,t)

−1vec(dΩj,t), where vec(·) concatenates

the columns of a matrix into a column vector, and where the negative inverse of the matrix in

front of vec(dΩj,t) is our scaling matrix to correct for the curvature of the score. Multiplying

the vectorized version of (13) by this scaling matrix, we obtain the scaled score

vec(sΩj,t
) =

(
1
2

N∑
i=1

τ
(k)
i,j

)−1

(Ωj,t ⊗ Ωj,t) · vec
(
∇Ωj,t

)
=

(
N∑
i=1

τ
(k)
i,j

)−1

· vec
(
2Ωj,t∇Ωj,t

Ωj,t

)
⇔

sΩj,t
=

∑N
i=1 τ

(k)
i,j [(yi,t − µj,t)(yi,t − µj,t)′ − Ωj,t]∑N

i=1 τ
(k)
i,j

. (15)

The estimation of the model can be carried out using the EM algorithm as before, replacing

Ωj by Ωj,t in equations (10)–(11).

2.4.2 Student’s t distributed mixture

This section robustifies the dynamic finite mixture model by considering panel data that are

generated by mixtures of multivariate Student’s t distributions. Assuming a multivariate

normal mixture is not always appropriate. For example, extreme tail observations can easily

occur in the analysis of accounting ratios when the denominator is close to zero, implying

pronounced changes from negative to positive values.
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To use the EM-algorithm for mixtures of Student’s t distributions, we use the densities

fj(yi,t;θj,t) =
Γ((νj +D)/2)

Γ(νj/2) |πνjΩj,t|1/2
(
1 + (yi,t − µj,t)′ (νjΩj,t)

−1 (yi,t − µj,t)
)−(ν+D)/2

. (16)

Both the E-steps and the M-steps of the algorithm are unaffected save for the fact that we

use Student’s t rather than Gaussian densities. The main difference follows for the dynamic

models, where the score steps now take a different form. Using (16), the scores for the

location parameter µj,t and scale matrix Ωj,t are

∇µj,t = Ω−1
j,t

N∑
i=1

τ
(k)
i,j wi,j,t · (yi,t − µj,t) , (17)

∇Ωj,t
= 1

2

N∑
i=1

τ
(k)
i,j Ω−1

j,t [wi,j,t · (yi,t − µj,t)(yi,t − µj,t)′ − Ωj,t] Ω−1
j,t , (18)

wi,j,t = (1 + ν−1
j D)

/(
1 + ν−1

j (yi,t − µj,t)′Ω−1
j,t (yi,t − µj,t)

)
. (19)

The main difference between the scores of the Student’s t and the Gaussian case is the

presence of the weights wi,j,t. These weights provide the model with a robustness feature:

observations yi,t that are outlying given the fat-tailed nature of the Student’s t density receive

a reduced impact on the location and volatility dynamics by means of a lower value for wi,j,t;

compare Creal et al. (2011, 2013) and Harvey (2013). We use the same scale matrices for the

score as in Sections 2.3 and 2.4.1. For the location parameter, which is our main parameter

of interest, the scaling matrix for the Student’s t case is proportional to that for the normal,

such that any differences are included in the estimation of the smoothing parameter A1. We

obtain the scaled scores

sµj,t =

(
N∑
i=1

τ
(k)
i,j wi,j,t · (yi,t − µj,t)

)/(
N∑
i=1

τ
(k)
i,j

)
, (20)

sΩj,t
=

(
N∑
i=1

τ
(k)
i,j

(
wi,j,t · (yi,t − µj,t)(yi,t − µj,t)′ − Ωj,t

))/(
N∑
i=1

τ
(k)
i,j

)
. (21)

The intuition is the same as for the Gaussian case, except for the fact that the scaled score

steps for µj,t and Ωj,t are re-descending to zero and bounded, respectively, if yi,t is extremely
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far from µj,t. Also note that for νj →∞ we see in (19) that wi,j,t → 1, such that we recover

the expressions for the Gaussian mixture model.

2.4.3 Explanatory covariates

The score-driven dynamics for component-specific time-varying parameters can be extended

further to include contemporaneous or lagged economic variables as additional conditioning

variables. For example, a particularly low interest rate environment may push financial

institutions, overall or in part, to take more risk or change their asset composition; see e.g.

Hannoun (2015), Abbassi et al. (2016), and Heider et al. (2017). Using additional yield

curve-related conditioning variables allows us to incorporate and test for such effects. Let

Xt be a vector of observed covariates, and Bj = Bj(�) a matrix of unknown coefficients

that need to be estimated. In the case of a Student’s t distributed mixture, the score-driven

updating scheme then changes slightly to

µj,t+1 = µj,t + A1 ·
∑N

i=1 τ
(k)
i,j wi,j,t(yi,t − µj,t)∑N

i=1 τ
(k)
i,j

+Bj ·Xt. (22)

Again, in the case of a Gaussian mixture, wi,j,t = 1. The covariates can also be made firm

and cluster component specific, i.e., Xi,j,t.

2.5 Diagnostics: Stability of cluster allocation over time

The assumption that component membership is time-invariant implies that pooling infor-

mation over t = 1, . . . , T is optimal. This is of substantial help to robustly classify each

unit i. Although our sample covers only 32 quarters (8 years), it is clear that switches in

component membership become more likely as the sample period grows. In such a case, we

have to trade off estimation efficiency against estimation bias.

To check whether component probabilities τi,j are time-varying, we consider the point-
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in-time diagnostic statistic

τ̂ij|t =
π̂jfj

(
yi,t

∣∣∣Yi,t−1;θj,t(�̂)
)

∑J
h=1 π̂hfh

(
yi,t

∣∣∣Yi,t−1;θh,t(�̂)
) , (23)

which can be viewed as the time t posterior probability that firm i belongs to cluster compo-

nent j, computed using the estimates under the null of time-invariant cluster assignments.

A filtered counterpart using information from time 1 to t can be constructed by replacing

fj(yi,t | Yi,t−1;θj,t(�̂)) by
∏t

s=1 fj(yi,s | Yi,s−1;θj,s(�̂)). If τ̂i,j|t is close to 1 or 0 for all t

for a specific (i, j), firm i is unlikely to have switched clusters. Otherwise, switches may be

a concern. We discuss time series plots of τi,j|t for diagnostic purposes in our application in

Section 4.

3 Simulation study

3.1 Simulation design

This section investigates the ability of our score-driven dynamic mixture model to simulta-

neously i) correctly classify a data set into distinct components, and ii) recover the dynamic

cluster means over time. In addition, we investigate the performance of several model selec-

tion criteria from the literature in detecting the correct model when the number of clusters is

unknown. In all cases, we pay particular attention to the sensitivity of the EM algorithm to

the (dis)similarity of the clusters, the number of units per cluster, and the impact of model

misspecification.

We simulate from a mixture of dynamic bivariate densities. These densities are composed

of sinusoid mean functions and i.i.d. disturbance terms that are drawn from a bivariate

Gaussian distribution or a bivariate Student’s t distribution with five or three degrees of

freedom. The covariance matrices are chosen to be time-invariant identity matrices.

The sample sizes are chosen to resemble typical sample sizes in studies of banking data.

We thus keep the number of time points small to moderate, considering T ∈ {10, 30}, and
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set the number of cross-sectional units equal to N = 100 or to N = 400. The number of

clusters used to generate the data is fixed at J = 2 throughout. In our first set of simulation

results in Section 3.2, we assume J = 2 is known. In a second set of simulations, we do

not assume to know the number of clusters, but determine it using different model selection

criteria. To save space in the main text, the description of these criteria has been moved to

Web Appendix A, together with the outcomes of these simulations.

In our baseline setting, visualized in Figure 1, we generate data from two clusters located

around means that move in two non-overlapping circles over time. Across our different

simulation designs, the data have different signal-to-noise ratios in the sense that the radius

of the circles is large or small relative to the variance of the error terms. In addition, we also

consider two more challenging settings where the two circles overlap completely: the circles

have the same center, but differ in the orientation of the time-varying mean component

(clockwise vs. counterclockwise). Again, we consider circles with a large and small radius,

respectively, while keeping the variance of the error terms fixed and thus changing the signal-

to-noise ratio in the simulation set-up.

Finally, we investigate the impact of two types of model misspecification. First, we

incorrectly assume a Gaussian mixture in the estimation process when the data are generated

by a mixture of Student’s t densities with five degrees of freedom (ν = 5). Alternatively,

we simulate from a t(3)-mixture, but fix the degrees of freedom parameter to five in the

estimation. In both cases, we check the effect of mis-specifying the tail behavior of the

mixture distribution. In total, we consider 96 different simulation settings.

3.2 Simulation results for classi�cation and tracking

Using the score-driven model set-up and EM estimation methodology from Section 2, we

classify the data points and estimate the component parameters from the simulated data.

The static parameters to be estimated include the distinct entries of the covariance matrices,

and the diagonal elements of the smoothing matrix A1, which, for simplicity, we assume to

be equal across dimensions and components, i.e. A1 = a1ID.

Figure 1 illustrates our simulation setup with two examples. The data generating pro-
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