HomeTaighdeSraith páipéarPáipéir de réir údair
Search Options
Home Publication Explainers Statistics Payments Career Monetary Policy
Suggestions
Sort by
Níl an t-ábhar seo ar fáil i nGaeilge.

Kai Carstensen

22 April 2024
WORKING PAPER SERIES - No. 2930
Details
Abstract
We study how millions of granular and weekly household scanner data combined with machine learning can help to improve the real-time nowcast of German inflation. Our nowcasting exercise targets three hierarchy levels of inflation: individual products, product groups, and headline inflation. At the individual product level, we construct a large set of weekly scanner-based price indices that closely match their official counterparts, such as butter and coffee beans. Within a mixed-frequency setup, these indices significantly improve inflation nowcasts already after the first seven days of a month. For nowcasting product groups such as processed and unprocessed food, we apply shrinkage estimators to exploit the large set of scanner-based price indices, resulting in substantial predictive gains over autoregressive time series models. Finally, by adding high-frequency information on energy and travel services, we construct competitive nowcasting models for headline inflation that are on par with, or even outperform, survey-based inflation expectations.
JEL Code
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
C55 : Mathematical and Quantitative Methods→Econometric Modeling→Modeling with Large Data Sets?
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
Network
Price-setting Microdata Analysis Network (PRISMA)

Úsáideann ár suíomh gréasáin fianáin

Bainimid úsáid as fianáin fheidhmiúla chun roghanna úsáideora a stóráil; fianáin tríú páirtí arna socrú ag seirbhísí tríú páirtí atá comhtháite sa suíomh gréasáin.

Tá sé de rogha agat glacadh leo nó iad a dhiúltú. Le haghaidh tuilleadh faisnéise nó chun athbhreithniú a dhéanamh ar do rogha maidir leis na fianáin agus na logaí freastalaí a úsáidimid, iarraimid ort an méid seo a leanas a dhéanamh:

Léigh ár ráiteas príobháideachais

Faigh tuilleadh eolais faoin gcaoi a n-úsáidimid fianáin